
AD-AI01 996 DEPARTMENT OF DEFENSE WASHINGTON DC F/G 9/2

1980PROCEEDINGS OF THE SEMINAR ON THE DOD COMPUTER
SECURITY INITIAT-ETC(U)

UNCLASSIFIED

.3 mlllllllEEEI
EEEIIIIIhIEEI
lEE/IEE/IllEEE
EEEElIllEllE
EIIIIIEIIEEEI
mI/EEEEE/h/I/EE

K LEVELS
PROCEEDINGS

of the

I ii SEMINAR

ON THE

DOD COMPUTER SECURITY

INITIATIVE PROGRAM -)

CLEARED :

-E BM R NJUL101981
AND SECURITY REVIw (UASO- PA

W.AArMEA~l 9LAQ~

NATIONAL BUREAU OFFANDARDS DTIC
4011 9- 5 ELECTE

.ERBURG, MARYLANDS JUL24 1981

D
DISTRIBUJTION STATI T,'"Ti i-

Approved for pubhlic relelse;
1 T T -j i ited _ EMBER 18-20, 1M3680

.......... ~2 12-.1 VM E.

TABLE OF CONTENTS

Page

Table of Contents i

About the Seminar iii

About the DoD Computer Security Initiative iv

Acknowledgements v

Program vi

List of Handouts IN

"Introduction and Opening Remarks," Stephen T. Walker,

Chairman, DoD Computer Security Technical Consortium A-i

"Opening Remarks," Seymour Jeffery,

National Bureau of Standards B-I

"DoD Computer Security Initiative," Stephen T. Walker,

Chairman, DoD Computer Security Technical Consortium C-i

"Honeywell Trusted ADP Systems," Irma Wyman, Honeywell D-l

"Computer Security Research at Digital," Paul A. Karger,

Digital Equipment Corporation E-1

"Security and Protection of Data in the IBM System/38,"
Viktors Berstis, IBM F-I

"Gnosis: A Secure Capability Based 370 Operating System,"

Jay Jonekait, TYMSHARE, Inc. G-i

"Computer Security Developments at Sperry Univac,"

Theodore M. P. Lee, Sperry-Univac H-1

Panel: "How Can the Government and the Computer Industry Solve

the Computer Security Problem?" Ted Lee, Sperry-Univac,
Jim Anderson, James P. Anderson, Inc., Steve Lipner, MITRE,
Marvin Schaefer, System Development Corporation,
Bill Eisner, CIA I-i

"Quality Assurance and Evaluation Criteria," Grace H. Nibaldi,
MITRE Corporation J-1

"Specification and Verification Overview," William F. Wilson,
MITRE Corporation K-I

1

"FEM: A Formal Methodology for Software Development," Richard
Ke.merer, System Development Corporation L1

"Building Verified Systems with Gypsy," Donald I. Good,
University of Texas M-I

"An Informal View of the HDM Computational Model," Karl N.
Levitt, Stanford Research Institute International, Inc. N-1

"AFFIRM: A Specification and Verification System,"
Susan L. Gerhart, University of Southern California Information
Information Sciences Institute 0-1

"An Overview of Software Testing," Mary Jo Reece, MITRE
Corporation P-1

"Update on KSOS," John Nagle, Ford Aerospace and
Communications Corporation Q-I

"Assurance Practices in KVM/370," Marvin Schaefer, R-I
System Development Corporation

"Kernelized Secure Operating System (KSOS-6)," Charles H.
Bonneau, Honeywell S-1

Accession For

NTIS GRA&I
DTIC TAB
Unannounced
Justification

By .buion vo

Availability Codes A

Availand/o

Third Seminar on the

DEPARTMENT OF DEFENSE COMPUTER SECURITY INITIATIVE

November 18-20, 1980

National Bureau of Standards

Gaithersburg, Maryland

ABOUT THE SEMINAR

This is the third in a series of seminars to acquaint computer
system developers and users with the status of 4trustedo ADP system
developments within the Department of Defense and current planning for
the integrity evaluation of commercial implementations of similar
systems. The two previous seminars have stressed user requirements for
trusted computer systems within both the government and private sector.
The first day of this seminar includes presentations by five computer
manufacturers of the trusted system development activities within their
organizations. Following these presentations there will be a panel
discussion on OHow can the government and the computer industry solve
the computer security problem?0 Panelists are drawn from industry and
government.

The second day of the seminar opens with a discussion of the
technical evaluation criteria that have been proposed as a basis for
determining the relative merits of computer systems. The assurance
aspects of those criteria provide the context for the second and third
days of the seminar. After the context has been set, we provide an
introduction to formal specification and verification technology to
include descriptions of the basic types of formal specification and the
implications of design and program verification. Representatives of
several prominent specification and verification research groups will
then discuss their systems.

As a way of rounding out the assurance criteria and providing
further context for the later talks, the opening talk on the third day
discusses software testing techniques. Current acquisition program
testing approaches are contrasted with the formal verification
techniques discussed on the second day, emphasizing the role of such
testing in revealing errors which formal verification cannot detect
today. Then the developers of the DoD-sponsored trusted systems will
discuss the techniques they have used to assure a quality product. The
seminar will conclude with a panel discussion on "Where should you put
your assurance dollars?" Panelists are drawn from the verification,
development and testing communities.

*A "trusted" ADP system is one which employs sufficient hardware and
software integrity measures to allow its use for simultaneously
processing multiple levels of classified and/or sensitive information.

iii

- - " -. --

ABOUT THE DOD COMPUTER SECURITY INITIATIVE

The Department of Defense (DoD) Computer Security Initiative

was established in 1978 by the Assistant Secretary of Defense for
Communications, Command, Control and Intelligence to achieve the

widespread availability of "trusted" ADP systems for use within the
DoD. Widespread availability implies the use of commercially
developed trusted ADP systems whenever possible. Recent DoD

research activities are demonstrating that trusted ADP systems can

be developed and successfully employed in sensitive information
handling environments. In addition to these demonstration systems,

a technically sound and consistent evaluation procedure must be

established for determining the environments for which a particular

trusted system is suitable.

The Computer Security Initiative is attempting to foster the
development of trusted ADP systems through technology transfer

efforts and to define reasonable ADP system evaluation procedures to

be applied to both government and commercially developed trusted ADP

systems. This seminar is the third in a series which constitutes an

essential element in the Initiative Technology Transfer Program.

The NBS Institute for Computer Sciences and Technology, through

its Computer Security and Risk Management Standards program, seeks

new technology to satisfy Federal ADP security requirements. The
Institute then promulgates acceptable and cost effective technology

in Federal Information Processing Standards and Guidelines. The
Institute is pleased to assist the Department of Defense in

transferring the interim results of its research being conducted
under the Computer Security Initiative.

ii

I
ACKNOWLEDGMENTS

A number of people in and outside of the DoD Computer Security
Technical Consortium have helped to make this seminar a success. At
the MITRE Corporation, Grace Nibaldi and Bill Wilson helped to organize
the speakers; Karen Borgeson and Dianne Mazzone managed registration,

and Annir ;scepolo and George Huff prepared some of the handouts.

Alu, .e are grateful to Jo Ann Lorden and Greta Pignone of NBS

for arranging the splendid facilities.

DISCLAIMER

The presentations in this proceedings are provided for

your information. They should not be interpreted as necessarily
representing the official view or carrying any endorsement, either
expressed or implied, of the Department of Defense or the United

States Government.

Stephen T. Walker, Chairman

Computer Security Technical Consortium

V"

PROGRAM

November 18, 1980 Red Auditorium

9:15 Opening Remarks

Seymour Jeffery,
Institute for Computer Sciences & Technology
National Bureau of Standards

DOD Computer Security Initiative

Stephen T. Walker, Chairman

DOD Computer Security Technical Consortium

INDUSTRY TRUSTED SYSTEM ACTIVITIES

Paul A. Karger
Digital Equipment Corporation

10:45 Break

11:00 INDUSTRY TRUSTED SYSTEM ACTIVITIES - Continued

Irma Wyman

Honeywell

Viktors Berstis
IBM

Jay Jonekait
TYMSHARE, Inc.

Theodore M. P. Lee
Sperry-Univac

1:00 Lunch

2:00 PANEL: "How Can the Government and the Computer
Industry Solve the Computer Security Problem?"

Theodore M. P. Lee, Sperry Univac
James P. Anderson, Consultant
William Eisner, Central Intelligence Agency
Steven P. Lipner, Mitre Corporation
Marvin Schaefer, System Development Corporation

3:00 Break

3:15 PANEL - Continued

4:30 Adjourn

vi

November 19, 1980 Red Auditorium

9:00 "Quality Assurance and Evaluation Criteria"

Grace H. Nibaldi
Mitre Corporation

9:50 "Specification and Verification Overview"

William F. Wilson
Mitre Corporation

10:45 Break

SPECIFICATION AND VERIFICATION SYSTEMS

11:00 "FDM: A Formal Methodology for Software Development"

Richard Kemmerer

System Development Corporation

12:00 "Building Verified Systems with Gypsy"

Donald I. Good
University of Texas

1:00 Lunch

SPECIFICATION AND VERIFICATION SYSTEMS - Continued

2:00 "An Informal View of HDM~s Computational Model"

Karl N. Levitt
SRI International

3:00 Break

3:15 "AFFIRM: A Specification and Verification System"

Susan L. Gerhart
USC Information Sciences Institute

4:15 Adjourn

vii

November 20, 1980 Red Auditorium

9:00 "An Overview of Software Testing"

Mary Jo Reece
Mitre Corporation

THE EXPERIENCES OF TRUSTED SYSTEM DEVELOPERS

9:45 "Update on KSOS"

John Nagle
Ford Aerospace and Communications Corporation

10:45 Break

11:00 KVM/370

Marvin Schaefer
System Development Corporation

12:00 "Kernelized Secure Operating System (KSOS-6)"

Charles H. Bonneau
Honeywell

1:00 Lunch

2:00 PANEL: "Where Would You Put Your Assurance Dollars?"

Panelists: Developers, Researchers, & Testers

3:00 Break

3:15 PANEL - Continued

4:15 Adjourn

vi i

LIST OF HANDOUTS

In addition to the information documented in these Proceedings,

the following materials were made available at the Seminar:

Computer Security Initiative Program Trusted Systems Bibliography.

Computer Security Initiative Program Glossary.

M. H. Cheheyl, M. Gasser, G. A. Huff, J. K. Millen, "Secure System
Specification and Verification: Survey of Methodologies," MTR-3904,

The MITRE Corporation, Bedford, Massachusetts, 20 February 1980.

G. H. Nibaldi, "Proposed Technical Evaluation Criteria for Trusted
Computer Systems," M79-225, The MITRE Corporation, Bedford,

Massachusetts, 25 October 1979.

G. H. Nibaldi, "Specification of a Trusted Computing Base (TCB),"

M79-228, The MITRE Corporation, Bedford, Massachusetts, 30 November

1979.

J. D. Tangney, "History of Protection in Computer Systems," MTR-

3999, The MITRE Corporation, Bedford, Massachusetts, 15 July 1980.

E. T. Trotter and P. S. Tasker, "Industry Trusted Computer System

Evaluation Process," MTR-3931, The MITRE Corporation, Bedford,

Massachusetts, 1 May 1980.

ix

OPENING REMARKS

STEPHEN T. WALKER
DIRECTOR, INFORMATION SYSTEMS

ASSISTANT SECRETARY OF DEFENSE FOR

COMMUNICATIONS, COMMAND, CONTROL AND INTELLIGENCE

Good morning and welcome to the third seminar on the DoD Computer Security

Initiative.

My name is Steve Walker and I am Chairman of the DoD Computer Security
Technical Consortium which is the sponsor of these seminars.

I am very pleased to be with you today to report on the progress that has been
made in the area of trusted computer systems in the past several years and
indeed in the past few months.

I am particularly pleased to acknowledge two very significant developments
in the world of computer security that have made major strides since our last
seminar.

First, as you can tell from looking at your program, the major external
objective of the Computer Security Initiative, that of getting the computer
manufacturers involved in the development of trusted computer systems is
being accomplished. The credit for this belongs to many factors over and
above the efforts of the Initiative but as I hope you will realize from
today's presentations, the manufacturers are now seriously involved in
building trusted computer systems.

The other point I want to emphasize is that the Initiative's major internal
objective, that of getting the government organized to perform the technical
evaluation of the integrity of computer systems is also nearing an accomplished
fact. I had hoped to be able to formally announce the establishment of
some form of Computer Security Evaluation Center. I cannot do that but
I can describe some of the concepts being considered at high levels within
the Government and I am sufficiently optimistic about these developments
that I am willing to predict that within a year there will be a technical
integrity evaluation process in being to serve the DoD and perhaps one to
serve the Federal Government as a whole.

I am excited about both of these developments because of the significant
impact that they will have, indeed are now having, on the quality of computer

systems for all users.

I would like now to review with you some of the background leading up to
these developments and to share with you my feelings about where we are

and where we may be going.

A-I

2

Following this we will hear from 5 manufacturers'representatives about
trusted computer system activities in their companies.

This afternoon we will have an expanded version of the "Ted and Jim" Show
from the last seminar. We have a select panel of cynics to discuss the
status and pitfalls of developing and using trusted computer systems.

Tomorrow we will focus on the area of formal specification and verification,
hearing from several researchers. Thursday we will hear the experiences
of several of the DoD system development efforts in their use of these
verification tools.

A-2

lit

OPENING REMARKS

THIRD SEMINAR ON THE
DEPARTMENT OF DEFENSE COMPUTER
SECURITY INITIATIVE PROGRAM

Seymour Jeffery
Institute for Computer Sciences and Technology

National Bureau of Standards

November 18, 1980

On behalf of the Directors of the National Bureau of
Standards and the Institute for Computer Sciences and Technology,
I would like to welcome you to this Third Seminar on the
Department of Defense Computer Security Initiative Program. ICST
is pleased to sponsor a forum for DOD to present the progress
made in the important area of computer security, DOD has defined
the term "trusted" ADP System as one which satisfies the DOD
requirements of simultaneously processing multiple levels of
classified or sensitive information. We at NBS feel there is a
strong need to transfer this technology to the non-DOD Government
sector as well as to private industry so that the technology may
be used to satisfy their computer security requirements. I
believe that this transfer of technology is an important part of
the NBS program in computer security.

This is the third DOD-NBS Seminar on trusted operating
systems. Some of you are new to the field; some of you have been
involved as long as I have; and some perhaps even longer.

Dr. Willis Ware of the RAND Corporation, who keynoted the
first seminar in this series, was the first to articulate the
computer security problem and to outline some approaches to
solving it. In his opening remarks at the first seminar in
January, 1979, Dr. Ware reviewed the computer security problem as
he perceived it in 1967. He noted the successes and the failures
in solving the problems during the last 12 years. I, too, would
like to spend a few minutes looking back at one of the milestone
events in the computer security area. This event was the
Controlled Accessibility Workshop co-sponsored by NBS and ACM and
held at Rancho Santa Fe, California in the Fall of 1972.
Controlled Accessibility was the term used to denote the set of
controls which could be used to limit the access to. and use of,
a computer only to authorized users performing authorized
activities. The Workshop brought together 65 computer security
technologists and managers. The group was tasked with
identifying technical and management controls which would provide

B-I

the desired protections. The controls were divided into five
areas:

- Audit
- EDP Management
- Personal Identification
- Security Measurement

- Access Controls

Since this seminar emphasizes the automated controls of a
"trusted computer operating system", I want to spend a few
minutes describing the findings of the Access Controls Working
Group of the 1972 Workshop. This group was led by Clark Weissman
of System Development Corporation. The goal of the Working Group
was to define the nature of an automated access control mechanism
and to identify the technology involved in ensuring secure
computer system operation. Regarding the primary threats which
must be combatted by automated access controls, the group wrote,
"System security is most threatened by the vulnerability of the
internal access control mechanism to unauthorized modification by
subversion of normal internal system service, or exploitation of
system weaknesses, such as incomplete design and coding errors."

Leading towards the technology which will be discussed here
the next three days, the following points were noted in the
Report of the Controlled Accessibility Workshop published by NBS
in 1973, and I am sure you will hear several of these repeated in
subsequent sessions this week.

One - Control mechanisms should be formal and always
invoked, never by-passed for efficiency or other
rationalized reasons.

Two - The design must accommodate evaluation and easy
system maintenance.

Three - The principle of "least privilege" should be applied
to system operation.

Four - The computer system vendor will have the ultimate
responsibility for delivering systems that can be
operated securely.

Finally - Product acceptance will require application of
certification techniques.

It has been eight years less 23 days since the Controlled
Accessibility Workshop. In some areas technology has advanced
rapidly. The capability of micro-computers has risen
dramatically. The Federal Data Encryption Standard is now
available in 13 different electronic devices which have been

B-2

validated by NBS. The need for such a standard was identified at
that Workshop. In other areas technology has made only modest
advances. For example, automated personal identification through
voice or signature recognition. In the area of "trusted"
systems, DOD has carried the research and development
initiatives. In other areas identified as having high priority
at that Controlled Accessibility Workshop, NBS has initiated the
development of technical standards and management guidelines to
address computer security requirements. These areas include risk
analysis, contingency planning, security audit and evaluation,
data communication and storage protection and physical security.
We have had some successes in these areas. At the first DOD-NBS
seminar, Willis Ware challenged NBS to, I quote, "STEP OUT
SMARTLY" in developing new and innovative standards in computer
security. We are pleased to sponsor this forum so that the
technology being developed to meet DOD's needs is also made
available to satisfy similar needs in the private and public
sectors. Security is not well understood, and in some cases not
well accepted, outside DOD. We feel it is important that the
vendors and the users of the technology underlying "trusted
systems" exchange their views in an open forum.

As we listen to the needs of the DOD and the private and
public sectors, we will initiate a plan for a tenth anniversary
workshop of the work that was started in 1972.

B-3

DOD

COMPUTERSECURITY INITIATIVE

.t.TO ACHIEVE THE WIDESPREAD
AVAILABILITY OF TRUSTED
COMPUTER SYSTEMS

Stephen T. Walker
Chairman
DoD Computer Security
Technical Consortium

SEMINAR
ON

DEPARTMENT OF DEFENSE
COMPUTER SECURITY

INITIATIVE

NOVEMBER 18-20, 1980

NATIONAL BUREAU OF STANDARDS

GAITHERSBURG, MARYLAND 21738

COMPUTER
SECURITY INTIATIVE

TRUSTED: SUFFICIENT HARDWARE AND
SOFTWARE INTEGRITY TO
ALLOW SIMULTANEOUS USE
AT MULTIPLE SECURITY/
SENSITIVITY LEVELS

WIDESPREAD: COMMERCIALLY SUPPORTED

c;-I

L.

COMPUTER SECURITY

PHYSICAL SECURITY

ADMINISTRATIVE SECURITY

PERSONNEL SECURITY

COMMUNICATIONS SECURITY

EMANATIONS SECURITY

HARDWARE/SOFTWARE
SECURITY

C-2

COMPUTER NETWORK VULNERABILITIES

UAPS
SAMLTMO UPS* AAtATI NOIT

RAOS IcN{ CQOSITMAI m AL 1

RMM. MOILCT) MEHNIG

UNAUTH"Qsw smap.ms MEJI PBOGIUM ___L'ow

.071ET'CN FEATRES CONOLE

CCUTROL I REEALPROTC~r MEAURE

AC OTORK CORRECTLYWIT
RENSPETT H CONTROL OFTE ~a

ETC.3

APPROVAL FOR DoD USE

1113 DODD 520028~ PLC i
DOO s~o. POLICY

E DEVELOPMENT PHYSICAL

Q GROUP /1 ADMINISTRATIVEU v " PERSONNEL

I - SPECIFIC DESIGNATED A HARDWARE/
ER SYSTEM -~ APPROVIING G(' SOFTWAREE REQUEST AUTHORITY .. = SECURITY
M

-kTEMPEST
N] COMSECN
T
S INDIVIDUAL

INSTALLATION
FOR USE OF ADP APPROVAL

PROCESSING
CLASSIFIED

INFORMATION

APPROVAL FOR DoD USE
INDUSTRY

SOON DODD 5200.28

'982 *POLICY
EVALUATIONR CENTER

E DEVELOPMENT CNE
Q GROUP

SPECIFIC DEINATED" "EVALUATEDR SYSTEM APPROVING PRODUCTS
E --- REQUEST ATOIYLIST"

M
E
N
T

INDIVIDUAL

INSTALLATION
FOR USE OF ADP APPROVAL

PROCESSING
CLASSIFIED

INFORMATION

C-4

EVALUATED PRODUCTS LIST

TECHNICAL POSSIBLE
CLASS FEATURES EXAMPLES ENVIRONMENTS

I MOST COMMERCIAL DEDICATED MODE
SYSTEMS

2 FUNCTIONAL SPECIFICATION 'MATURE' BENIGN. NEED TO
REASONABLE PENETRATION -ENHANCED- KNOW
RESULTS OPERATING SYSTEM ENVIRONMENTS

3 REASONABLE MODERN MULTICS AF DATA SERVICE
PROGRAMMING TECHNIQUES CENTER TS-S
LIMITED SYSTEM INTEGRITY
MEASURES

4 FORMAL DESIGN ND USER
SPECIFICATIONS SYSTEM PROGRAMMING
INTEGRITY MEASURES TS-S-C

5 PROVEN DESIGN KSOS LIMITED USER
SPECIFICATIONS VERIFIABLE KVMI PROGRAMMING
IMPLEMENTATION LIMITED TS.S-C
COVERT PATH PROVISIONS

B VERIFIED IMPLEMENTATION FULL USER
AUTOMATED TEST PROGRAMMING
GENERATION EXTENDED TS-S-C
COVERT PATH PROVISIONS
REASONABLE DENIAL OF
SERVICE PROVISIONS

COMPUTER SECURITY INITIATIVE

EDUCATIONPHASE________________
PUBLC SEMINARS/WORKSHOPS I

SPECIFICATION PHASE
DRAFT 10DOD COORD. I INDUSTRY COOED. REVIEW AND ENHANCEMENT

II. EVALUATION PHASE
INFORMAL FORMAL

KEOSal I INDUSTRY 7.

KVM -- SUBMITTED

HONEYWELL SYSTEMS
DIGITAL EOUIPMtNT CORP _______

TYMSHARE I
I~ "EVALUATED PRODUCTS LIST'

iSI 5 1112 ?"d

c-5

COMPUTER
SECURITY INITIATIVE

DoD RbD IN 1IM9
OPERATING SYSTEMS

" MAJOR EMPHASIS
" MOSTLY SOFTWARE, SOME

HARDWARE
APPLICATIONS

0 MINODR FOCUS UN~TIL LATE 79.
VERIFICATION TECHNOLOGY

*COMPUTER SECURITY WAS ONE
AMONG MANY POTENTIAL USERS

DoD R&O THRUSTS IN 703
OPERATING SYSTEMS

EXAMPLES

4ENlJE SECURE OPERATING SySTEM
KftR#4ELZED VM3O SYSTEM

DRIVEN BY
WHAT CAN WE HOPE TO ACHIEVE IN
3-5 YEARS?
WHERE WOULD WE LIKE TO BE IN
5-8 YEARS?

INTENDED AS DEMONSTRATION
CAPABILITIES. NOT AS COMPETITION
WITH MANUFACTURERS

DaD R&D THRUSTS IN 70s
APPLICATIONS

GUARD. SECURITY FILTERS
*BETWEEN EXISTING SYSTEMS

COMMUNICATIONS, FRONT END SYSTEMS
- ACCESS PROTECTION TO EXISTING SYSTEMS

MULTIPLE SINGLE-LEVEL FUNCTIONS
* KVM

TRUSTED MULTILEVEL SYSTEMS
" SPECIAL PURPOSE -MESSAGE HANDLING
* GENERAL PURPOSE -DBMS

C-6

DoD R&D THRUSTS IN 70s

VERIFICATION TECHNOLOGY
" EVOLVED FROM EFFORTS TO BUILD

"CORRECT PROGRAMS"

" SEVERAL APPROACHES ARE
EVOLVING
NONE HAVE COMPLETE PACKAGE

" PROGRESS EMPHASIZED IN REST
OF THIS SEMINAR

DoD R&D IN IBIs

OPERATING SYSTEMS
RELY MAINLY ON INDUSTRY
EVOLUTION

SOME SPECIALIZED DEVELOPMENT
APPLICATIONS

MAJOR EMPHASIS BY R&D AND
USER COMMUNITY

VERIFICATION TECHNOLOGY
MAJOR THRUST BEGINNING

ENSURE UNDERSTANDING OF
PRODUCT INTEGRITY

TECHNOLOGY EVOLUTION

" HARDWARE CHEAPER, MORE
POWERFUL

* COMPLEX SOFTWARE FUNCTIONS
MOVING INTO HARDWARE

* BETTER UNDERSTANDING OF
OPERATING SYSTEMS

* WHAT IS NEEDED, HOW TO
PROVIDE EFFICIENTLY

* ASSURANCE TECHNIQUES
IMPROVING RAPIDLY

C-7

INDUSTRY THRUSTS IN 70s

DRIVING FORCE: IMPROVE PRODUCT QUALITY
* EASE MAINTENANCE, MODIFICATION

IMPROVE PERFORMANCE
FLEXIBILITY
INTEGRITY
SECURITY

CONSTRAINT: EXISTING CUSTOMER BASE

EVOLUTIONARY VERSUS REVOLUTIONARY

MANUFACTURERS

PROGRESS

DIGITAL EQUIPMENT CORPORATION

HONEYWELL CORPORATION

INTERNATIONAL BUSINESS
MACHINES CORPORATION

TYMSHARE CORPORATION

SPERRY UNIVAC CORPORATION

C-8

HONEYWELL

TRUSTED ADP SYSTEMS

Irma Wyman

INTRODUCT ION

It is my pleasure, and my privilege, to share with
you this morning, the position, and philosophy of
Honeywell Information Systems regarding computer
security. And, also, to let you know about our current
activities and future goals in this important area.

Slide 1

POSITION

Computer Security theorists tend to view computer
security in absolute terms,...and properly so. Their
visions of absolutely secure hardware/software systems
provide us with the conceptual upper limits of computer
security on what we at Honeywell believe must be viewed
as a spectrum... the "Perfect Ten" on a scale of "zero"
to "ten".

Slide 2

Honeywell's position with respect to computer
security is that computer hardware/software products
should provide the systems integrity necessary to reduce
risks of unauthorized penetration to a level acceptable
to the intended product markets, subject to the
constraints of technology and acceptable costs and
performance.

We believe this position, and even more importantly
our activities in pursuit of the elusive "Perfect Ten",
to be supportive of the Computer Security Initiative
Program's objective of achieving "trusted" ADP systems.

ISSUES

Before describing our philosophy and current
activities, Id like to comment on three of the issues
that must be resolved before a "trusted" ADP system is
likely to become a commercial reality.

)-I

Slide 4

1. Perhaps the most obvious issue, and one that I
understand will be addressed in some detail during the
next three days, is that of PROVABILITY. Edsger
Dijkstra (well known for his contributions to the
concepts of structured programming) once suggested that
"Testing only reveals the present of 'bugs', not their
absence". What then are the criteria and mechanisms to k
be used to prove a system as "trusted"? Furthermore,
should this be a binary designation? Should there, in
fact, be a hierarchy of "trustworthiness"?

2. A second issue is concern with terminology---
specifically the terms "system integrity" and "adequate"
(or "sufficient" as used in the Initiative Program's
definition of a "trusted" system).

- I know of no generally accepted definition of "system
integrity" and strongly suspect that if ten of us
here were to write down and compare definitions, we'd
come up with at least nine different answers.

- "Adequate" and "sufficient" are relative terms to
start with. When applied to various definitions
of "system integrity", the resulting differences
of opinion should be no surprise to anyone.

PHI LOSOPHY

Honeywell's philosophy, our school of thought, is
that system integrity--"trusted" ADP systems--will be
achieved through a hardware/software mechanism called a
SECURITY KERNEL, based on the REFERENCE MONITOR concept,
and implemented through DESCRIPTOR-DRIVEN PROCESSORS.

Honeywell and other vendors can, of course, offer
their own definitions. I suggest, however, that groups
in the public and private sectors, such as yourselves,
address this issue to mitigate nature vendor biases.
The December 1979 issue of the EDP Analyzer might be
useful in such an endeavor.

3. The third issue deals with the relationship between
technological advancement and practical business
economics. Technological advancement in computer
security (or any other area) is largely dependent upon

D-2

the resources devoted to that end. Allocation of
resources, of course, is in turn dependent on
management's estimates of return on investment as the
advanced technology is applied to perceived needs in the
markets served. As I think you will see at the
conclusion of this presentation, Honeywell has perceived
an increasing demand for improved computer security and
is aggressively addressing this issue.

Slide 5

Numerous computer security groups in studying
access control mechanisms recognized the need for
provability of correctness. This led to the recommended
technical approach that computer security must start
with a statement of an abstract, ideal system. This
ideal system became known as the reference monitor. The
reference monitor abstraction permits or prevents access
by subjects to objects, making its decision on the basis
of subject/object identity and the security parameters
of the subject and the object. The implementation of
the abstraction both mechanizes the access rules, and
assures that they are enforced within the system. The
mechanism that implements a reference monitor must meet
three requirements: Complete mediation, isolation and
verifiability. These requirements demand that the
reference monitor implementation include hardware as
well as software. The hardware/software mechanism that
implements the reference monitor abstraction is called a
Security Kernel. It is felt that to implement a trusted
ADP System, the Security Kernel concept must be used.
And to implement the kernel, descriptor-driven
processors must be utilized.

Slide 6

The kernel mechanism must provide for complete
mediation, and be invoked on every access by a subject
to an object.

Slide 7

The kernel mechanism must provide for complete
isolation for itself, its data base, and for all users.

I)-3

Slide 8

The kernel mechanism must be small, simple and
understandable so that it can be completely tested and
verified that it performs its functions properly. This
kernel mechanism is the key to certifiable, multi-level
security and a trusted ADP system.

Slide 9

One of the current challenges in verification and
certification is to find an agency or committee which
will - and can - with authority - say that: The design is
sound, the implementation is correct, the verification
methodology is correct, and it has been correctly applied
to proving the design and implementation of the trusted
ADP system.

Now, let us examine Honeywell's involvement in

trusted ADP Systems.

Slide 10

1964 - Start of the MULTICS Program - An architecture designed for
controlled sharing from the beginning. Utilize modified 600.

1968 - The GCOS II O.S. - which included enhanced software security
features.

1969 - MULTICS - Became operational on a G-645.
1969 - GCOS III - Enhance software security on GCOS.
1972 - Implement Multics on a 6190. Additional access control

implemented in hardware.
1972 - The GCOS III O.S. - Provided the vehicle to investigate

and enhance software access control mechanisms.
1974 - Multics implemented on the 6800. Speed up access control

mechanism. Develop an access isolation mechanism to
enforce DOD security policy.

ALCOM 700 - Design and implement a secure remote batch
terminal. The only computer system to be
certified secure. Still the only certified
secure ADP system.

1974 - Project Guardian - Based on Multics - was begun
with the objective to build a provably secure,
general purpose system with a secure front end
processor.

1977 - Level 6 SCOMP Program was initiated to develop secure
communications processor.

1977 - CP-VI Plus Level 66 - Implementation of new, controlled
sharing access mechanisms on Level 66 hardware in order

D-4

to provide access control enhancements and provide an
upgrade path for CP-V users.

1979 - DPS-8/GCOS-8 was announced - New product with advanced
controlled sharing, access mechanisms to replace the
Level 66 and GCOS III. Security is a primary design
goal.

Slide 11

Let us review some of these significant events in
more detail. First, Multics.

Multics was designed as a general purpose computer
utility with interactive processing and controlled
sharing of all information. Data security was a primary
design goal. This controlled sharing is achieved by a
unique file system with virtual memory integration and
hardware enforced access controls.

Slide 12

To enforce complete mediation and allow controlled
sharing of all information, Multics utilizes descriptor
driven processors with segmentation. Each segment has an
access control list. The access control list is checked
by the system when the segment is opened. The system
then sets the access control bit into a descriptor.
Thereafter, the hardware enforces access controls on
every reference.

In addition to the access control list, the Multics
access isolation mechanism extends the basic access
controls of Multics to insure isolation of users
according to DOD security policy. Each user and segment
is assigned an access isolation mechanism access code
which enforces eight levels of clearance and eighteen
need-to-know category sets. This access code is checked
when a segment is opened, when the access control list is
changed, and when information is exchanged between users
in the system.

Slide 13

For isolation, the Multics structure provides for
eight hierarchical rings which separate the operating
system from system utilities and users, and the users
from each other, providing for complete hardware enforced
isolation.

D-5

A -

Slide 14

For example:

Ring 4 contains procedures "A-I"

Ring 5 contains procedures "B-I"

Procedures "B-I" has read permissions for data
in ring 4.

Slide 15

Procedure "B" requests access to procedure "A"
data. The request is made via the control mechanism in
ring zero.

Slide 16

The control mechanism in ring zero "O.K.'s" the
request and verifies that a gate mechanism exists
between procedure "A-i" and "B-i".

Slide 17

This gate mechanism permits procedure "B" to "read"
data from procedure "A". (Via Program Q).

Procedure "A" actually writes the data via the gate
to procedure "B".

It should be noted that if the access isolation
mechanism were activated then the request would have
been denied. (It would have been a lower clearance
level attempting to read data at the higher clearance
level.)

This access isolation mechanism was defined as a
part of Project Guardian.

Slide 18

Project Guardian, started in 1974, was the first
attempt to implement a kernel on a Honeywell system. As
a result of government funded studies, the Multics

D-6

system was selected as the host computer for the design
and implementation of a kernel mechanism which would
meet the three requirements of: Complete Mediation,
Isolation, and Verifiability. Unfortunately, Project
Guardian was cancelled because of funding problems prior
to achieving its ultimate goal.

However, as a result of Guardian, the Multics
system has been approved to run in a two level security
mode, simultaneously servicing Secret and Top Secret
users. Project Guardian demonstrated that complete
mediation of access, isolation from unauthorized access,
and verifiability - (that is, provability and
testability) - of a security kernel was possible. In
addition, a proof methodology was defined and a secure
front end processor was defined.

Slide 19

The secure front end processor was based on a
commercial Tempest Honeywell Level 6 minicomputer which
was to be enhanced by a hardware security protection
mechanism and special kernel software. To understand
how the security protection mechanism was to be
implemented, let us quickly review the standard Level 6
memory management mechanism.

Slide 20

Memory management on the Level 6 is embodied in a
hardware memory management unit, which provides for a
four ring architecture, and a descriptor driven
processor with segmentation. The descriptors define
location, size and access controls very similar to a
miniaturized version of the Multics access control
mechanism, and ring architecture. For the secure
front-end processor, this memory management unit was to
be replaced by a "virtual memory interface unit" and
extra hardware called a "security protection module"
which was to implement kernel functionality.

Slide 21

SCOMP -

The Secure Communications Processor (SCOMP) project
was started after the Guardian project. The object of
this project is to pick up the secure front end

D-7

processor development after it was stopped under project
Guardian and make it more general purpose. In other
words, to design and implement a provably secure multi-
purpose minicomputer, also known as a Trusted Computing
Base (TCB).

The SCOMP consists of a Level 6 central processor
with a virtual memory interface unit and security
protection module which runs with all other Level 6
hardware. The virtual memory interface unit replaces
the memory management unit previously mentioned. The
security protection module consists of additional
boards. The design of the security protection module is
based on the reference monitor concept and implements a
large portion of the security kernel functionality in
hardware. A key point is that hardware access controls
were extended to include I/O.

That portion of the security kernel functionality
which is not implemented in hardware is handled by a
software security kernel termed KSOS-6.

Some people use the acronym KSOS-6 to refer to both
hardware and software.

Slide 22

The software security kernel (KSOS-6) resides in
ring zero of the SCOMP system. This software security
kernel works in conjunction with the hardware kernel
which is called the security protection mechanism. In
the outer two rings, user application and system
utilities operate. As a part of this project, certain
specialized trusted system routines are being designed
and implemented to form a comprehensive trusted
computing base. A more detailed presentation on the
SCOMP will be given later in this seminar.

While working on joint effort projects, such as
SCOMP and Guardian, Honeywell has also been working on
system integrity control mechanisms.

Slide 23

We have applied the knowledge and experienc:e gained
through these efforts to our product lines.

I)-8

" '- "J'-- -"L t' _ ,:,... v.',-.,. . ..2 ,. . . ,,.,. ,.,;. ,': ,,..:..C ,, ,2. ..

And, it is felt that our recently announced DPS-8 -

with an evolving GCOS-8 - is "potentially" a provable
trusted ADP system.

Slide 24

DPS-8 hardware supports:

1. Virtual Memory

2. Security Mechanisms that are emphasized in the
hardware

3. Domain Protection

Slide 25

The DPS-8 virtual memory architecture allows for
eight trillion bytes of virtual memory. All of the
security access control mechanisms are implemented in
the central processing unit and in the I/O processing
unit, and reference a common set of working space
tables.

Slide 26

The working space tables are controlled by
descriptors which provide for segment definition and
access controls. This access control mechanism
accomplishes the first requirement of a security kernel,
to provide for complete mediation. The descriptor
mechanism provides protection, segment boundary control,
access control, and the ability to reduce the size or
the access rights to a segment.

Slide 27

The domain mechanism satisfies the second
requirement of a security kernel: to provide absolute
hardware enforced isolation. A domain is a logical
system territory consisting of all segments referenced
by a user's procedure. This mechanism differs from
Multics in that there is no implied hierarchical ring
structure.

D-9

Slide 28

The domain concept allows information to be
delivered strictly on a need-to-know basis for process
execution. All domain context switching is handled by
hardware.

Slide 29

For Example:
The domain of procedure "A" is comprised of the program "A",
systems software working space tables, and different parts
of a data base.

Slide 30

The segments of domain "A" may in turn be shared by
other domains all under hardware enforced access control
mechanisms. This means that any given entity needs to
exist only once within the operating system.

Slide 31

The domain mechanism also permits temporary sharing
between domains.

For example, procedure "A" desires to query
procedure "B" in domain "W".

Slide 32

Procedure "B" within domain "B", if the access
permissions are acceptable, will increase its domain
territory to include the argument segment of procedure
"A". Procedure "B" then deposits the requested
information in a temporarily shared portion of domain
"A".

Slide 33

Upon completion, procedure "B" then executes a
command to "shrink" its domain back to its original
territory.

Slide 34

We believe that the DPS-8 architecture provides the
base on which a secure system can be built, and that it

D-1O

will prove to be the key to an effective, flexible,
multi-level "trusted" ADP system. Possibly a OPerfect
10".

As indicated by our past and current activities,
Honeywell has been, and is now, committed to aggressive
action in responding to the needs for improved computer
secur ity.

Slide 35

To reduce the costs associated with providing
effective security features in our computer products.

Slide 36

To provide mission optimized, multi-level solutions
to the problems of computer security.

Slide 37

To optimize system efficiency in the multi-level
"trusted" ADP system environment.

Slide 38

To work cooperatively with government and private
industry to resolve the issue of provability--to
establish the criteria, process and accrediting
authority for "trusted" ADP systems.

We believe we offer the most secure systems
available today, and are determined to maintain our
leadership position in the future.

D)-Il1.

. ii

Honeywell

Trusted ADP Systems
The Leader

D-1 2

<-I'D ISK ANALY~Ss/q;, '4,

USER ~ SC~q ~ ~ ADIT Honeywell

HOW DO YOU ACHIEVE

TRUSTED ADP

D-13

PRINCIPLES OF SECURE SYSTEM
" COMPLETE MEDIATION
* ISOLATION
* CERTIFICATIONISIMPLICITY

AND ACCESS PERMISSIONS

5

COMPLETE MEDIATION

6

D-14

ISOLATION

OBJECT=

QMECHANISM
"KERNEL"

DATA

7

VERFIABIU1YICERT1FIABIUTIACCREDITATION

SIMPLE AND STRAIGHTFORWARD
KERNEL

TO PERMIT ANALYSIS

Honeywell

8

D-1 5

"KERNEL"
IS KEY TO

CERTIFIABLE MULTILEVEL SECURITY

Honeywell

9

'00

. J*

lo~

)-I f6

00- -3 N

MULTICS

SECURITY
I.

I.

MULTICS-THE SECURE SYSTEM

SECURITY MECHANISMS UNIFORMLY APPLIED
* ACCESS CONTROL LISTS
* ACCESS ISOLATION MECHANISM
* RING PROTECTION MECHANISM
* PASSWORDS
• AUDIT TRAILS
* USER DEVICE ATrACHMENT CONTROLS

12

D-17

HIERARCHICAL

RINGS

A-1

DATA FO

14

D -18

4!

0

RW WE

0 I

RR-W

Sii
A DR..

16oe~e

D41

A I

DATA PD R DATA
0 x

RWE

17 Hn~~

PROJECT GUARDIAN
* ACCESS ISOLATION MECHANISM
* KERNEL FEASIBILITY ESTABLISHED
* PROOF METHODOLOGY DEFINED
* SECURE FRONT-END PROCESSOR DEFINED

Honeywell

18

D-20

Honeywell

TEMPEST LEVEL 6 MINICOMPUTER

Honeywel

MEMORY MANAGEMENT

31 SEGMENTS

20R

EACH

SEGENT

SPM + LEVEL 6 MINICOMPUTER =SCOMP

CENTRAL SECURITY INPUT/
PROCESSOR PROTECTION OUTPUT MEMORY

UNIT MODULE CNTROLLER

VIRTUAL
MEMORY

INTERFACE
NIT

CENTRA LPROCESSOR
UNITt

BUS LOGIC

BUS

21

SOFT WARE OVERVIEW

LOWEST

PRIVILEGE UTILITIES OPERATING

KERNE KERNEL DOMAIN

HARDWtARE

22

D-22

DPS 8/GCOS 8

AN EVOLVING SYSTEM
DPSB + GCOS8=
POTENTIALLY PROVABLE TRUSTED ADP SYSTEM

23

DPIS 81GCOS 8
SECURITY
0 VIRTUAL MEMORY
0 SECURITY MECHANISM EMPHASIZED

IN HARDWARE
0 DOMAINS

Honeywell

24

D-23

IMAIN MEMORY WORKING SPACE TABLE

MAIN
MEMORY

WORKING
CPU SPACE lCM

%.~p TABLE

CPU & IOM USE
SAME VIRTUAL REFERENCES

25

ACCESS CONTROL MECHANISM = COMPLETE MEDIATION

SEGMENT

ACCESS RIGHTS WORKING SPACE BOUNDARY

26 Honeyell

D-24

DOMAIN ISOLATION

27 Honeywell

SECURITY [HARDWARE

RELATED DESCRIPTOR
TABLES REGISTERS

SECURITY
MECHANISM

28

D-25

SOFTSMEIPRCEDUR

DOMAMAIS

30 TE O

DAT SOTWAE POCEUR

TEMPORARY SHARING BETWEEN DOMAINS

A 1

DATA ROUTINE

"A" CALLS SUBRUINE "S
WITH WORK DEFINITION

Honeywell

32

REL

01) ROUTINE

00

33

DPS 8/GCOS 8

THE ARCHITECTURAL KEY TO PRODUCTION ORIENTED
MULTI-LEVEL SECURITY

34

)-28

A-,

HONEYWELL GOALS
TO REDUCE THE COST FOR SECURE ADP OPERATIONS

35

HONEYWELL GOALS
TO PROVIDE MISSION OPTIMIZED MULTI-
LEVEL SOLUTIONS

36

D-29

i i- -i - -

HONEYWELL GOALS
TO OPTIMIZE SYSTEM EFFICIENCY IN THE MULTI-
LEVEL TRUSTED ADP SYSTEM ENVIRONMENT

I

37

HONEYWELL GOALS
TO WORK WITH GOVERNMENT AND INDUSTRY TO
DEFINE AND "HOPEFULLY SOLVE" THE ACCREDITED/
CERTIFIABLE TRUSTED ADP SYSTEM PROBLEM

38

D-30

COMPUTER SECURITY RESEARCH AT DIGITAL

Third Seminar on the Department of Defense

Computer Security Initiative

18-20 November 1980

Paul A. Karger
Diqital Equipment Corporation

Corporate Rsearch Group

146 Main Street (MLI-2/E41)
Maynard, MA 01754

(617)493-5131

ARPAnet: KARGER@DFC-MARLBORO

COMPUTER SECURITY
RESEARCH

AT

RESEARCH GOAL

UNDERSTAND HOW TO BUILD AND
SUPPORT SECURE SYSTFMS FOR
GOVERNMENT AND COMMERCIAL
USERS

E-1

RESEARCH ISSUES

* EVOLVABLE SECURITY
* PRODUCTION QUALITY VERIFICATION TOOLS
" NETWORK SECURITY PROTOCOLS

" ENCRYPTION
* LAYERED PRODUCT SECURITY

EVOLVABLE SECURITY

* SECURITY MUST FIT IN WITH EXISTING

PRODUCTS

* SECURITY ENHANCED SYSTEMS FIRST
" THEN VERIFIED SECURITY KERNELS

SECURITY ENHANCED
SYSTEM

* FEATURES OF SECURITY KERNEL
- LATTICE MODEL
- ACCESS CONTROL LISTS

" NOT VERIFIABLE

* BUILT RESEARCH PROTOTYPE
ON VAX-11/780

E-2

.... J _L

KERNELIZED SYSTEMS

" PERFORMANCE QUESTiONS

" PRODUCTION QUALITY VERIFICATION TOOLS
- MUST RE-VERIFY FOR NEW RELEASES

" CODE PROOFS IMPORTANT
-TOP LEVEL SPEC PROOFS DON'T FIND

SUBTLE COOING ERRORS

SECURITY ENH4ANCED SYSTEM

APPLICATIONS APPLICATIONS
LAYOM LY

P~oOUcys pUoICto

o SECURITY ENHANCED

SECURITY KERNEL
BASED SYSTEM

V -STI - 1 -T1

$,gre II YEM

NETWORK SECURITY
PROTOCOLS

* AUTHENTICATION FORWARDING
- PASSWORD CONTROL

" ROUTING UNDER LINK ENCRYPTION
- ROUTING NODES ARE HOST COMPUTERS

* NETWORK-WIDE DISCRETIONARY CONTROLS

END-TO-END ENCRYPTION

" ESSENTIAL FOR ETHERNETS

" OUTBOARD FROM OPERATING SYSTEM
- CANNOT TRUST THE HOST

" WHAT WILL DOD SUPPLY?
- CRYPTOGRAPHIC DEVICES
- KEY MANAGEMENT
- SESSION LEVEL PROTOCOLS

LAYERED PRODUCT
SECURITY

" PROTECTED SUBSYSTEM SUPPORT FOR
- DATA BASE SYSTEMS
- ELECTRONIC MAIL SYSTEMS
- TRANSACTION PROCESSING SYSTEMS
- ETC

E-4

WHAT SHOULD
GOVERNMENT DO?

" MAKE CLEAR RFP REQUIREMENTS
- ASK FOR BELL & LAPADULA LATTICE MODEL
- ASK FOR VERIFICATION
* ASK FOR KERNELIZED SYSTEMS

" OTHERWISE VENDORS WON'T BE MOTIVATED
" INITIALLY SEPARATELY PRICED OPTIONS

WHAT ABOUT KSOS- 1 1?

* DIGITAL IS WATCHING KSOS-1 I

DEVELOPMENT

* WE WOULD LIKE TO EVALUATE IT
e EXTENSIVE HANDS-ON REVIEW

REQUIRED

CONCLUSION

0 DIGITAL IS ACTIVE IN SECURITY RESEARCH

0 SECURITY IS IMPORTANT IN GOVERNMENT
& COMMERCIAL MARKETS

a SECURITY WILL EVOLVE IN DIGITAL
PRODUCTS

~E- 5

I A

CORPORATE RESEARCH GROUP

E-6

SECURITY AND PROTECTION OF DATA

IN THE IBM SYSTEM/38

VIKTORS BERSTIS

IBM

ROCHESTER, MINNESOTA USA

IMq SYSTEM/38

F-1

WHIAT IS THE IBM SYSTEM/38 ?

- SMALL BUSINESS COMPUTER FROM INFORMATION SYSTEMS DIVISION

- REPLACEMENT AND GROWTH FOR SYSTEM/3 USERS

- AVERAGE CUSTOMER HAS 1-2 PROGRAMMERS

- EASE OF USE PRIMARY GOAL

- LANGUAGES ARE RPG-III. COBOL, CL, QUERY AND DDS

- CONTROL PROGRAMMING FACILITY (CPF)

- HIGH LEVEL MACHINE INTERALE

- DATA BASE FUNCTIONS

- SYSTEM INTEGRITY AND SECURITY

W'HAT IS SYSTLf/38?

M'I CROCODE YTf3

PROCESSOR MEMiORY 0
DISKS

F-2

116-

HOW IS WORK DONE ON SYSTEM/38 ?

- USER SIGNS ON TERMINAL WITH PASSWORD

- SUBSYSTEM STARTS PROCESS

- USER PRUFiLE ASSUCiAIED WITH USER

- PROGRAMS CALLED TO DO WORK

- OBJECTS AND PROGRAMS ACCESSED

- MACHINE CHECKS AUTHOR!TY TO USE

IMPLEMEN1ATIOH OF SECURITY IN IBM SYSTE I/38

CAPABILITY BASED ADDRESSING

USER PROFILES

PROCESSES

SYSTEM/38 P

PROCESS

DATA DATA

F-3

4tI

CONTROL PROGRAMMING FACILITY (CPF)

- COMMANDS

- CONTROL LANGUAGE

- OBJECTS
- FILES
- PROGRAMS
- USER PROFILES
- MESSAGE QUEUES
- SUBSYSTEMS
- JOBS
- DEVICES

- PROMPTING AmN HELP

- SPOOLING

- DEBUGG1NG

- RECOVERY

SECURITY FEATURES

-MATRIX OF USER PROFILES VS OBJECTS

-AUTHORIZED TO CLASSES OF OPERATIONS

-SECURITY OFFICER

-CPF COMMANDS
-GRANT OBJECT AUTHORITY
*REVOKE OBJECT AUTHORITY
-DISPLAY OBJECT AUTNORITY

-CHANGE OBJECT OWNER

DISPLAY USER PROFILE

-CREATE USER PROFILE
*DESTROY USER PROFILE
-CHANG USER PROFILE
-DISPLAY AUTHORIZED USERS

-DISCRETIONARY AUTHORIZATION

-NO MANDATORY POLICY

F-4

AVINORITO CAIGGORIES

CATEGORY

RESOURCE
STORAGE ALLOTMENT

PRIVILEGED INSTRUICTIONS
CREATE USER PROFILE
INI TIATE PROCESS

T ERMINATE MACklINE PROCESSING
CREAW LOGICAL UNIT DESCRIPTION
[REATEf TNAJI DESCRIPTION

CREATE CONTROLLER DESCRIPTION
TOETE OSER PROFILE

DIAGNOSE
SPECIAL AUTHORITIES

ALL OBJECT

Dump

PROCESS CONTROL
SERVICE
RODTEY MACHINE ATTRIBUTES

TBJECT OUTHQAIIIES--AUTHORIZED ONl A PER OBJECT BUSTS
EOTTNIs L

OBJECT CONTROL
ACCESS

OBJECT MAAEMENT
Au 1HORiZED POINTER

CON TENT S

SPACERIETRTEVE
INST RT
DE LET
UPDATE

ADDRESSING

POINTER
(CAPABILITY) 1A DYTES

TAGS

RIRUAL ACCESS OTHNER

ADDRESSTUA ADD15 RESS TI

0 39 40- 63

PROGAM. CREAT ION

INPUT TO THE CREATE PROGARMU INSTRUCTION DEFINING THE PROGRAM:

INSTRUCT ION STREAM OPERAND DECLARATIlONS

ADD RESULT SUR SURC AUTOMATIC BINARY 4-BYTE
OP-CODE STATIC ZONED 4-BVTE

AUTOMATIC PACKED 8-BYTE BASED

CREATE
PROGRAM

I NS TRUCTION

MACHINE INSTRUCTION IITERFACE V ISILEI A SPACE OBJECT

PROGRAMNOT
AISIBLE

PROCESSOD
PROILEA SACESPACUTE SPAC

INVOCATIONCIONACTIVATIONEC

MICRO-ICTION INSTOCATION ATVTO

EXECINUTITIN STUCUR

INVOCATIO

USER ACTIVATION

PROFILE B

F-6

ADDRESSABILITY FROM A PROCESS

AUTOMATIC OBJECTS OBJECTS
& 9 9

STATIC OTHER OTHER
SPACE S SPACES SPACES

POINTERS SPACE

'NAM~E" ' POINTERS

CONTEXT

NAME-
ADDRESS

OBJECT AUTHORIZATION

ENTRY USER PROFILE C

USER ~ F -7 JC

UTOIE

AUTHORITY CHECKING

I RETRIEVE POINTER (CAPABILITY)

2 CHECK FOR AUTHORITY IN POINTER

3 CHECK FOR PUBLIC AUTHORITY

4 CHECK IF USER IS OWNER

-- IF OWNER, LOOK IN HEADER FOR AUTHORITY

5 CHECK FOR 'ALL OBJECT' AUTHORITY

6 CHECK IF USER IS EXPLICITLY AUTHORIZED

-- LOOK IN USER PROFILE

7 OPTIONALLY PUT AUTHORITY IN POINTER FOR NEXT REFERENCE

GOALS OF SECURITY MECHANISM

0 CONTROL ACCESS TO DATA

• MINIMUM OVERHEAD

• INTEGRITY/RELIABILITY

F-8

GNOSIS

GNOSIS:

A S"CURE CAPABILITY BASED 370 OPERATING SYSTEM

Presented by Jay Jonekait
Adva.iced Systems Development, TYMSHARE Inc.

ABSTRACT

Gnosis is a capability based operating system which
runs on 370 architecture computers. This paper de-
scribes why TYMSHARE developed Gnosis, introduces
some basic Gnosis concepts, and shows how they can
be applied to application programs. Gnosis appears
to be an attractive base for applications run in the
high security environments of both DOD and non-DOD
portions of the government. Possible alternatives
for Gnosis are explored at the conclusion of the
paper.

INTRODUCTION

About 1972, Tymshare business planners recognized
the need to evolve into new markets in order to sus-
tain profitable growth. One of the emerging trends
that was observed was that hardware was becoming
cheaper and that the market for selling raw time-
sharing was likely to flatten out and perhaps
evaporate in the future. At the same time machine
cycles were becoming cheap, access to usable infor-
mation was becoming more and more expensive.
Tymshare decided to specialize in the organization
and dissemination of the information.

Analyzing the market, Tymshare noticed several obvi-
ous business opportunities for general on-line
databases. In this market, the ability to protect
proprietary data and programs from accidental misuse

or theft was a vital prerequisite. One example of
this type of business is an online chemical patent
database. No customer would ever query the database
if they thought the queries might might become known
to one of their competitors. This kind of security
breech would allow the competitor to find out what
research they were pursuing.

TYMSHARE G-1

GNOSIS

In essence, what Tymshare wants to do is to develop
an information utility, with a large number of on-
line databases and a large number of programs that

create information from those databases. Most of

the programs and databases would not be owned by

Tymshare. Protecting the integrity and the security
of those programs is a vital concern to both their

owners and to Tymshare.

THE DEVELOPMENT FRAMEWORK

In the process of researching how to build such a

system and analyzing the options available, it was
noted that the existing operating systems running on
existing computer systems were not adequate to do
the job. The basic problem was that there was no

protection mechanism for programs or for data, that

there was no way to let two programs that were writ-
ten by different people interact without having them

trust each other. This kind of interaction would
expose one or the other to possible theft or misuse.
Tymshare had discussions with several manufacturers,

and did a lot of research on its own, while trying
to envision what would happen over the next 5 or 10
years. We concluded that none of the manufacturers

were likely to build the system that would solve our

problems.

During the course of its research, Tymshare discov-

ered that there was a rather well-known architecture
called "capability based operating systems" which
had been prototyped in several universities, such as
Hydra from Carnegie Mellon, and CAL TSS from Univer-

sity of California. These systems seemed to offer

great promise for being able to solve the kinds of
problems Tymshare needed to solve in order to create

the businesses that it wanted to create.

So, contrary to the then widely accepted philosophy
that it takes a large army or a small hoard to build

an operating system, a very low key project was
chartered at Tymshare in 1974 to build a commercial
quality, capability-based operating system.

There was a precedent for such temerity. The com-

pany had taken another similar risk about six years
earlier when it went against all then common tech-
nology wisdom to produce what is now Tymnet. That

TYMSHARE G-2

GNOSIS

investment was very successful. It was on the
strength of that investment and the fact that some
of the same people involved with Tymnet have been
involved in Gnosis, that the project was approved.

Thus, with a very small group, Tymshare set off to

build an operating system. One of the ideas that
Tymshare had to face up to was the fact that it was

not a hardware vendor and that therefore did not

have the luxury of being able to specify the design

of the system hardware.

Tymshare deliberately selected 370 hardware, despite

the fact that 370 hardware is probably not favored
in the security conscious environment. The primary,

and single biggest reason for selecting 370 hardware
was that there is a wide range of available CPU's
that extend from very small to very large configura-

tions. You may have noticed in the last couple of
years, that the small 370 CPU's are becoming smaller
and the largest ones are becoming larger. The trend

appears to be continuing and we expect both 370's on
a chip and 15 MIP processors to appear very soon.

The idea of extensibility was of particular interest

to Tymshare. We have built many applications on
small machines and have been somewhat embarrassed
when those applications became successful and sud-

denly there were more users than we knew what to do
with. We couldn't move them to a larger machine be-

cause there was no larger machine. We picked the
370 in part because if an application is built on a
small machine and the market grows, it is possible

to move it to a larger machine. Clearly, it is also

convenient to be able to take advantage of Gnosis on

the very small mini and micro 370's.

The second critical feature is that the 360/370

hardware has become an implicit industry standard.
This architecture is going to have a very long life

cycle, and we expect the evolution of the 370 to
continue. There will probably not be any
revolutionary changes to the 370 which will impact
Tymshare's business. Even if there are drastic

changes, at this moment, there are a large number of
second sources for 370 hardware available. We ex-
pect to take advantage of that fact if anything is

TYMSHARE

G-3

.... .

GNOSIS

announced which precludes Gnosis operation on future
IBM mainframes.

Until now, hardware has been emphasized. There is
also a strong motivation on the software side for
picking 370's. There are literally tens of billions

of dollars of software invested in 370 based operat-
ing systems right now. There is a wide range of

language processors, debugging tools, database man-
agement systems and utilities. Having limited re-

sources, Tymshare didn't want to have to write all
those programs and wanted to take advantage of the
software that other people have written for 370's.

DESIGN GOALS OF GNOSIS

To penetrate the markets described earlier, Tymshare

decided to build this system with several design
goals in mind. First and foremost it is necessary

to be able to protect proprietary programs and data;

this involves such things as being able to provide
execute only protection, or at least to have the
image of execute only programs where the source and

object cannot be displayed or tampered with. It
also involves the ability to have dynamic databases

which cannot in any way be accessed except through
the database management system. It involves ultra
secure file systems and so forth.

Second, in order to build this information utility

type system, Tymshare had to have a very high per-
formance system to do transaction processing. One
of the systems analyzed when considering possible

operating systems was the Airline Control Program,
ACP. ACP meets many of the performance objectives,

however, it is very difficult to work with and has

almost no security. Thus ACP tends to provide very
high performance, non-secure transaction processing

applications.

The third requirement is that the information utili-
ty business tends to lead to very complex applica-

tion programs (although complex application programs
and complex operating systems are not solely the
property of the information utility). However, one

of the things observed is that a complex application
is very difficult to enhance. It is also a well
known fact, that in most installations 80% of all

TYMSHARE G-4

4 -

GNOSIS

in-house manpower is utilized doing maintenance and
extending existing applications. Thus the problem
is that when one changes a program to add new func-
tion, often something which used to run is de-
stroyed.

Tymshare needed to have a system in which changes
could be introduced in a controlled manner without
impacting existing operational software. Gnosis is
such a system.

In addition, even when the system was not being
changed, it was necessary in the utility environment
to have a system which would degrade gracefully in-
stead of crashing around our ears. It is the prop-
erty of currrent operating systems and current ap-
plications to crash and disintegrate, kind of like
an old fashioned string of Christmas tree lights;
when one goes out, they all go out. This is not ac-
ceptable in Tymshare's environment. So Tymshare de-
signed an environment where very small portions of
an application program or a very small portion of
the operating system can fail without affecting the
rest of the system. Any user who is not particu-
larly involved with that portion of the application
or that portion of the operating system will be able
to continue to run unimpaired. All of this leads to
rather substantial benefits in programmer productiv-
ity.

Tymshare was not planning on building a military se-
curity type operating system. However, when
Tymshare heard about KVM, KSOS, and PSOS, we
wondered if we might have developed a system which
is suitable in this kind of an environment--not be-
cause it was designed for that environment--but be-
cause by using proper design techniques it solved
the problems of protecting proprietary programs, of
simplifying application maintenance, of building a
fail soft system with high performance and in the
process it also solved most of the security problems
that have been grappled with by many people in this
room. Tymshare obviously hasn't solved all the prob-
lems, but it has solved a great number.

TYMSHARE G-5

GNOSIS

ESSENTIAL GNOSIS CONCEPTS

To clarify how it is possible to make these state-
ments, it may be appropriate to introduce you very
briefly to two of the basic ideas of Gnosis. First,
Gnosis, like any other capability based operating
system, allows you to take a program and break it up
into a bunch of small compartments. Second, it pro-
vides for explicit communication paths between
compartments.

COMPRuMmu EXPLICIT COMMUNICATION
(DOMAINS) BETWEN COMMIEm I

(CwAPA1u

This compartmentalization of both the operating sys-
tem and of application programs serves the same pur-
pose as compartmentalization of information within
other kinds of secure environments. Each component
may have access to information only on a need to
know basis, and may make changes only where it has
the explicit authority to do so.

COMPARISON OF GNOSIS AND 370 SOFTWARE ARCHITECTURE

How is Gnosis different from other operating sys-
tems? Again, this architecture is not particularly
proprietary to Gnosis but is common to all capabil-
ity based operating systems. In a standard operat-
ing system, there are a bunch of objects called vir-
tual memories or tasks or control regions which con-
tain user programs. Underneath them is a supervisor
which keeps users from getting in each other's way,
decides which user can do what to whom, schedules
resources and generally controls things.

If an application package contained several pro-
grams, some mathematical subroutines, an interface
to a graphics system, and a data base management
system interface, all the code supporting these
functions would co-exist in a single virtual memory.
Since all the programs share the same memory, there
is no asssurance that the code in any one of these
components will not destroy or alter data belonging
to any of the other components.

TYMSHARE G-6

GNOSIS

In this environment, it is possible for any part of
the application to access the data buffers of the
data base manager (if it can find them). Even
though the data base manager carefully cleans up
after itself, a security exposure exists if the ap-
plication program processes interrupts from various
external sources. Similarly, a bug in the graphics
package can clobber code in the mathematical
subroutine package without leaving a clue as to who
did it. These complex unintended interactions lead
to unreliable operating systems and application pro-
grams, frequently with disastrous consequences.

Reliability, integrity, and security can be attained
by breaking applications into separate, isolated
components which can communicate with each other
only through explicit and controlled interfaces. In
such a case, the graphics package, for example,
could exist in its own virtual memory with its code
and data completely protected. If any failure oc-
curred in the graphics package, it would be possible
to know with great certainty that that failure was
due to a flaw in that graphics package, and those
parts of the application that did not depend upon
the operation of the graphics package would continue
to run.

In Gnosis, every application, and in fact most of
the operating system itself, is divided into small,
self-contained units called domains. Domains may
communicate with selected other domains via expli-
citly authorized communication paths called capabil-
ities. Domains are created and supervised by a very

small kernel of system code. A Gnosis domain serves
the same purpose as an address space or a virtual
machine in today's systems: it provides a place for
the program and its data to exist and to execute.
The difference is that a Gnosis application will
typicaly consist of several domains, each containing
a small subsystem (typically 50-1000 lines of source
code) implementing a specific function.

Each domain will typically hold capabilities which
let it communicate with a small number of selected
domains. It is not possible for a domain to access
its capabilities directly, or to counterfeit the
ability to interact with another domain. Thus, a
domain may only interact with those domains with

TYMSHARE (-7

GNOSIS

which it has been given a capability to interact,

and the interaction may only be of the form repre-
sented by the capability. (A domain with a read-
only capability to a file may not write into the
file.)

The same compartmentalization into domains has been
applied to the operating system, so the difference
between the operating system and the application in
Gnosis is very blurred. In fact, almost everything,
except the kernel is in domains. One of the inter-
esting properties which results fr m this is that
there is a not a monolithic operating system. That
is, the user does not have to take the whole thing.
If you do not like the Gnosis command system, you
are perfectly free to build your own command system.
If you do not like the Gnosis file system, you are
perfectly free to build your own file system and so
forth.

In particular, this also means that application code
can be replaced selectively. If there is a piece of
an application which is not performing properly and
you want to replace it, the piece can be safely re-
placed with another without jeopardizing the remain-
der of the application.

Gnosis has a kernel which performs some of the tasks
normally assigned to the supervisor. The Gnosis
kernel is small, about 10,000 lines of code, as op-
posed to half a million lines on some of the large
IBM operating systems. The kernel has been made very
small by making it a mechanism whose task is to im-
plement and enforce policy rather than define pol-
icy.

Because the kernel is small, we expect it to be more
trustworthy and reliable.

One other fact to be noted, is that the Gnosis
kernel has been designed in such a manner that it
can be easily put in microcode.

TYMSHARE G-8

GNOSIS

GNOSIS DESIGN OBJECTIVES/INTERDOMAIN COMMUNICATION

Consider the relationship between any two domains
(here called A and B) of a Gnosis application pac-
kage. If the program in domain A breaks, with a
100% probability, the bug is in the program in

domain A. There's nothing that domain B can do in
any way to impact the internal operation of domain
A. This makes debugging much simpler, since faults
can be clearly isolated.

I)I

A I)

When domain A calls domain B, information passes
using some protocol agreed upon by the authors of A
and B. The way one can tell that B is working is by
building a test program which exercises all the ap-
propriate parts of the protocol with A and checking
to see if B gives the right responses in every case.
Outside of that no one need really care what goes on
inside of B. We have used this property to great
benefit in building the operating system. We spent
a lot of time working on the protocol between any
two domains. The code that goes inside the domains
is often implemented using the simplest possible
algorithms.

So, for example, it's very easy to build a quick and
dirty application domain which implements a proto-
col between A and B. If one decides some day later
to put in a high performance version of B, it's a
very simple matter to write a new B to replace the
old B. If the new B obeys its protocol, then A and
B will continue to work with a 100% probability.

One other thing is important to remember about the
connection between A and B. This connection is put
there by a person who has the authority to put the
connection there. This connection cannot be forged
in any way shape or form. There is no password pro-
tection, no possibility of A being able to introduce
itself to B unless someone who has the proper au-
thority makes the introduction and connects the two
domains. So there is a tremendous amount of secu-
rity involved in the architectural structure of
Gnosis.

TYMSHARE
G-9

*1. -l . . . nI I
!

. .. ' : ' ' i"..... . .. '

GNOSIS

Let us now discuss the idea of connecting domains
together to perform an audit function.

AUDITABILITY

The ability to audit specific transactions is vital
in any security concious environment. Gnosis has ex-
tremely powerful facilities to assist this activity.
If an auditor wishes to examine the transactions be-
tween A and B, (and if the auditor has the authority
to do so,) it is possible to take the connection be-
tween A and B and splice an auditing domain into
that connection. What is vitally important is that
A and B will continue to interact without being able
to detect the auditor's presence.

The ability to splice an auditor in between any two
domains is a significant property of capability
based architecture. It is possible to use this
function for other advantages. For example, one can
insert debugging routines, performance monitors, or
transaction logs.

DISTRIBUTED COMPUTING

One of the more interesting ways in which it is pos-
sible to use this technology is to implement dis-
tributed computing. It is possible to move B physi-
cally to a remote machine without making any changes
to the code of either A or B. This is done by in-
serting two general purpose import-export domains in
the same manner the auditor was inserted. An
import-export routine is attached to A. B is moved
to a remote computing system and attached to another
import-export domain. When a telephone or satellite
link is established between the import-export
domains, A and B may communicate as before. No
changes were required in either routine, in fact, it
is not possible for either domain to know that B has

TYMSHARE G-10

GNOSIS

been moved to another system.

A

This technique will make it much easier for Tymshare
to develop distributed applications because all the
import-export logic and all the remote communication
logic have been removed from the application pro-
gram. Thus, the application programs can be devel-
oped on one machine. If the application grows and
will not fit on one machine it can be split and the
pieces put on additional machines as required.

UNIQUE FEATURES OF GNOSIS

There are no major architectural innovations in
Gnosis. The only thing that is unique about Gnosis
is the implementation. Gnosis is an instance of a
capability based system. Unlike the predecessors
built in universities, Gnosis is a commercial qual-
ity system. Gnosis is the only instance, that we
know of, of the union of a capability based system
with 370 architecture, which means union of the ca-

pability based system and 370 program compatibility.
This allows the use of most IBM compilers, languages
and application programs.

In addition, the system has been built not as a re-

search project, but as far as we know, the first
production quality capability based system.

Gnosis programs can be written in common languages
which provide a great deal of compatibility. Again,

the innovations are in the implementation, not in

the design.

370 ARCHITECTURAL WEAKNESS AND HOW GNOSIS OVERCOMES
THEM.

TYMSHARE G-11

GNOSIS

At the current time, the unique feature of Gnosis is

that it combines capability, architecture and 370

architecture. The 370 architecture is much maligned

because of its security weaknesses, and with due
cause. However, what many analysts have confused is

the 370 hardware architecture and the architecture

of the software systems that run on 370's.

Let us address several of the architectural

weaknesses that are often quoted.

The first perceived weakness is that 370 is a
two state machine. (Some other computers have
three machine states.) Gnosis extends the lim-
ited two state architecture of the 370 by the

use of domains for both the operating system and
application programs. The result is a system
with an unlimited number of distinct states
without an implied heirarchy between them.

The second well known problem with 370 architec-

ture is that the I/O architecture is very com-

plex and fraught with security exposures.

Gnosis solves the problem by architecturally
prohibiting any domain programs from executing
any channel programs. The kernel provides I/O
services through a very small set of simple

channel programs which can be thoroughly

debugged.

The third common charge is that 370 system soft-

ware has massive denial of resource exposures.
Gnosis has been architected and implemented in
such a way that all denial of resource exposures
are closed, assuming the hardware is performing

correctly.

SYSTEM STATUS

Briefly, this is where Gnosis is today:

We are scheduled to do a performance benchmark

on a real machine by the end of 1980.

The kernel is complete and working. It compiles

and runs programs written in any standard 370
language.

TYMSHARE

C-I

GNOSIS

However, with limited resources we have not been
able to put in all the support functions which
one would normally expect in an operating sys-
tem. For example, Gnosis does not have: 1) a
data tase management system, 2) full screen
display capabilities, or 3) a sophisticated

procedure language at this time.

SECURITY EVALUATION STATUS

We have been involved for the last year with the
Computer Security Initiative and the evaluation team
has come up with a report evaluating Gnosis from a

security standpoint.

The same team is now defining a security policy
which they will recommend be implemented on Gnosis.

We are also evaluating the need to develop formal

specifications for Gnosis.

SECURITY AND OTHER POLICY ISSUES

During the early parts of the evaluation, it was

discovered that the Army had a different set of se-
curity requirements from the Navy, which in turn had
a different set of requirements from the CIA, the
NSA, and so forth.

Being confronted by a multiplicity of requirements

and few resources, TYMSHARE realized that since no
security policy was universally acceptable, it was
better to provide universal tools which would enable
users to implement their own specific security poli-

cies.

One of the advantages of Gnosis is that it can pro-

vide an environment in which more than one, in fact
in which a number of policies can coexist. Each
user must follow the policy established by those in

authority who devise the policy for his group.

A PERSPECTIVE ON GNOSIS

Tymshare, during the course of its research, has

tried to visualize where Gnosis fits in the spectrum
of currently available and proposed operating sys-
tems. On the Computer Security Initiative rating

TYMSHARE

G-13

46A

GNOSIS

systems, our current implementation will probably
achieve a level 3 rating. If we choose to produce
formal specifications, it seems possible to achieve
a level 4 or 5 rating. Thus, Gnosis fits somewhere
betwee.. IBM's mainline products and KVM. On a per-
formance spectrum we expect extreme variations de-
pending upon whether the application program can
take advantage of Gnosis features. We expect most
applications to run within a binary order of magni-
tude (either faster or slower) on Gnosis compared to
IBM's operating systems. Most will run at about the
same speed.

SUMMARY OF GNOSIS ADVANTAGES

In summary, we expect Gnosis to provide significant
productivity benefits, major enhancements in ease of
maintenance for changing applications, high perfor-
mance, compatibility with existing IBM programs and
applications, and a high degree of protection for
both programs and data. These advantages may be re-
alized over a wide range of hardware configurations,
and will allow Tymshare to develop a number of com-
puter service businesses which cannot be realized
today.

POTENTIAL SECURE APPLICATIONS

Tymshare is now at the crossroads--with a limited
staff we can help prospective clients develop a
trusted environment for selected applications. Es-
sentially, there are four products that readily come
to mind that seem to have the highest payoff in
terms of meeting a need for which there is no exis-
ting product.

The first, and these are not necessarily in order,
is to combine Gnosis with a relational database sys-
tem, to produce a database engine (commonly called a
backend or a database machine) which can be used to
support multi-level secure databases. In this case
we can support relations with multiple security lev-
els.

A second product would be a trusted message switch,
using Gnosis as a front-end processor to connect two
or three or five or ten machines, none of which
trusts any other. It might also be used as a mes-

TYMSHARE
G-14

GNOSISVt
sage switch to transport messages between different
users who should not communicate with each other,
except through controlled channels.

The first two examples illustrate that Gnosis is not
particularly a replacement for MVS or for any stan-
dard operating system, but a tool with which to
build almost any kind of trusted high-performance
computer system.

If one combines the message switch and the rela-
tional database in the same machine, one can build a
secure transaction processing system. We have in-
vestigated the possibility of using this system to
help defense contractors who need to have subcon-
tractors' information collected in some safe place
but cannot allow subcontractors to see each other's
information.

A network of computers between government agencies
who don't wish to share their all secrets can also
be envisioned.

The trusted intermediary - An example in the commer-

cial world is the case where a person has written a
program which processes seismic oil data and another
person has some oil data that he needs to have pro-
cessed. Neither entity is willing to give up the
program or the data and yet the two of them can
cooperate with great mutual benefit.

CONCLUSIONS

Tymshare is planning the future of Gnosis. We need
more information about where Gnosis is appropriate,
and where in government there is a need for Gnosis.
We have tried to mention a few potential applica-
tions here which come to mind. We would like very
much to get more information about whether the ap-
plications mentioned are appropriate.

We also are attempting to decide the value of formal
specifications. We would very much like to have
some information as to whether having formal speci-
fications would make a difference in terms of the
potential market for Gnosis. To answer these ques-
tions, we need your help.

TYMSHARE

GNOSIS

In order to provide you with more background that
has been possible in this brief 30 minute presenta-

tion, we have a considerable amount of available
literature. Some information is still preliminary,
but it describes in more detail the system as it
stands, and what we expect to be able to do with it.
We have available the report from the evaluation
team, which deals with the security-oriented aspects
of the system rather than the functionally oriented

aspects of the system. Finally, we are willing to
engage in considerable technical discussion with
those who are interested.

Computer Security Developments at Sperry Univac

Theodore M. P. Lee
Manager, Systems Security

Sperry Univac
Roseville, Minnesota

November 18, 1980

Good morning. You have heard much -- and will be hearing much
more -- about a number of efforts at the fore-front of computer
security technology research and development. We thought it
would be useful to set these efforts in perspective by talking
about how the company I work for has dealt with the subject of
computer security in the context of very large, mature operating
systems and a diverse and well-established customer base.

As you know, Sperry Univac is the computer manufacturer with the
second-largest installed customer base in the world. Our share
of the federal gover-iment market is larger than our share of the
over-all market, especially when you include our Defense Systems
Division -- which produces the U.S. Navy standard ruggedized
ship-board computers.

One would think that with that kind of customer base we would
feel strong pressures and recognize a strong incentive to quickly
produce a "trusted computer system," as that phrase is understood
here. We do perceive a concern and a need, but not ones with
much urgency or clarity; the reasons why this is so are mostly
what I am going to be talking about.

Before I begin, however, Id like to make a comment, lest anyone
misinterpret my purpose. We believe that we do build trustworthy
computer systems. You trusted them when you flew into the air-
port here, or almost anyplace else; in fact, you most likely
trusted them when you asked the airline to hold a seat on the
plane for you. Many of you trusted them when you took your pay-
check to the bank. If the situation in the MidEast -- or Africa
-- or Afghanistan -- or anyplace else -- gets much worse there
are many people who are going to trust some of our computers to
do what they are supposed to do in that eventuality. There are
also many people who are trusting our machines to help them know
if things are getting worse. And these people really do know and
care about computer security, even if they don't talk to anyone
much about anything. So, in a way, by replacing the word
"secure" in discussions like this by the word "trustworthy" -- so
as not to give the false impression that the computers in the
U.S. government's inventory are insecure -- my friend Steve may
be making a different set of people upset with him.

So with that off my mind, what am I going to talk about?

H-i

First, I'm going to tell you a little about Sperry Univac and
what it makes.

Then I am going to tell you about what we have done over the last
ten years or so in the name of computer security -- or that has
been done to us.

Finally, I will tell you what we have going on now and in the
near future that I think does show progress towards more trust-
worthy computer systems.

What is Sperry Univac?

Sperry Univac is the major revenue and profit-generating part of
the Sperry Corporation (until recently known as the Sperry Rand
Corporation.) It was in effect started by the U.S. Government
shortly after the second World War and has a fascinating history
-- much of which, as they say, remains to be told. Its early
progenitors -- Eckert-Mauchley and Electronic Research Associates
-- produced the first modern commercial computers; (I'll let the
courts argue over exactly how to word that and exactly what it
means)

We have six major product development centers -- each of which is
responsible for a different -- but coordinated -- set of pro-
ducts, a number of manufacturing locations, and scores of sales
and customer support offices all around the world. (About half
of our business is outside the United States.)

The major product lines, then, are:

In Blue Bell, Pa. -- company headquarters -- we make our series
90 and System 80 lines of small and medium-scale byte-oriented
computers with an architecture similar to the IBM 360/370-style
architecture, supported by our own software.

In Salt Lake City we produce communications processors and termi-
nals -- smart and dumb -- used on all the mainframes.

In Irvine, Cal. our Mini-Computer Operations -- acquired from
Varian Data Machines a few years ago -- supplies the V77 line of
mini-computers, which are sold both on their own or as OEM pro-
ducts, to ourselves and to others.

In Cupertino, Cal., ISS makes disk-storage devices.

In the Minneapolis-St. Paul area there are two other major divis-
ions.

The Defense Systems Division produces ruggedized and other
special-purpose systems, mostly for the U.S. Defense Department,
mo.;tly for the U.S. Navy. But it is out of there that the air
traffic control computers used at most of the major U.S. airports
come.

H-2

And finally, in Roseville, Mn -- a suburb of St. Paul -- we make
(the large-scale 1100 series family of computers. The currently

produced products in that family range in size and cost from the
1100/60 -- selling for about $500,000, running at about 600,000
instructions-per-second -- to the large-scale 1100/84 -- about
$10,000,000 at about 8 million instructions-per-second. Previous
products in that family trace back to the ERA 1101, although the
first machines with truly similar architectures began with the
1107 and 1108 in about 1962.

The operating system for the 1108 -- called Exec 8 -- was the
first modern multi-processing operating system that had a full-
service file system, full suite of utilities and compilers, and
supported multi-programming and interactive time-sharing. We
take pride -- and incur much technical challenge -- in the fact
that even though the hardware has been continually enhanced over
the years, the current version of the operating system still sup-
ports -- from a single source tape of the system -- all previous
versions of the hardware since the 1108. And this includes the
fact that we have added iore base registers, added new instruc-
tions, and changed I/O and error-reporting interfaces with almost
every new model of the hardware.

The complete set of systems software for 0S/1100 contains about
ten million instructions, of which maybe 500,000 are the execu-
tive itself, a couple of million lines are in compilers, and the
rest are the data management system, transaction processing sys-
tem, and utilities. It has been estimated that the core of the
operating system -- what would form a Trusted Computing Base --

could be pared down to about thirty-two thousand instructions.
I know the foregoing sounds like a sales talk, but it is very

relevant: we have much history behind us and cannot start from
scratch. (I'll have more to say on that shortly, because we did
try -- twice, in fact -- to start again from scratch.)

History of Computer Security at Sperry Univac

Although it can be claimed that Sperry Univac's history of com-
puter security activities stretches back to the beginning -- we
had the first equipment approved under TEMPEST criteria before it
was even called TEMPEST -- serious attention was really given to
the problem at the start of the Exec 8 operating system first
delivered in about 1967. Just to make a multi-user, multi-
processing, interactive system work reliably we had to have pro-
tection features in it -- features that we thought were quite ef-
fective for their intended purpose.

It has taken us just as long as our customers and the other ven-
dors to recognize that the picture wasn't as comforting as it
seemed.

H-3

The history of our loss of innocence parallels that of everyone
else. It probably started with our attempt to bid an 1100 series
system on the WWMCCS program. We did bid and were technically
responsive. We did meet the half-formed "security requirements"
of the RFP through major special additions to the standard soft-
ware. Partly as a result of this WWMCCS experience, but also
following close on the issuance of DoDR 5200.28, our federal gov-
ernment marketing organization put together a task force to make
recommendations on what we should be doing about computer secur-
ity. Other members of the task force came from both our domestic
and international marketing groups, and from product development.
Customer representatives were invited to present their needs and
thoughts. Perhaps coincidentally, a subcommittee rf our user's
organization was formed at about the same time to n. e computer
security recommendations: the report of the marketing task force
mostly echoed and endorsed the user's report.

Both reports were issued in March of 1973. Notice that DoD
5200.28 had just been issued in January, the Ware report was
still classified, and the Anderson report had not yet been widely
read.

The report of our user's group is interesting, for its history
tells much about the education and communication problems in this
field. The committee writing the report was chaired by the head
of the University of Maryland's computer center and the other
members came from NSA, the Navy, the National Bureau of Stand-
ards, and RCA. Neither of the two reports said anything about
assurance -- as we now understand that subject -- or much about
security labelling of output media. The user's report said noth-
ing about special access categories or compartments or about
need-to-know lists. The marketing report strongly felt it was
impossible to fix on a single form of security policy -- such as
the DoD policy -- for all customers and instead asked for a quite
general, almost programmable, means to specify the security
"authority" of a user and the security "requirements" to be met
for accessing a particular file.

It took us back in Roseville a number years to draft our response
to the marketing report -- for it contained numerous detailed
recommended changes that needed to be coordinated with our other
development plans and commitments -- and we are now just about to
ship the first pieces of code implemented in response to that
process.

During this long period we have had until recently very few addi-
tional demands from our customers. In 1973 NRL commissioned a
small penetration study of a particular widely-used but already
obsolete version of Exec 8. They documented one already-known
small class of vulnerabilities -- not applicable to later ver-
sions of the exec -- and despite the fact that -- and probably
partly because of it -- the report of the study was classified
for about six months its not-very-favorable conclusions made the

H-4

national press, starting with Jack Anderson's column, and even
resulted in congressional and DOD-wide investigations. I under-
stand there may have been a few other risk assessments and pene-
tration studies of our systems, but we are generally not told of
their happening or of their results.
About the only other "demands" have been in the form of the

"security requirements" of various requests-for-proposals. I

want to give you several examples, all within the last year. For
the most part, these have not clarified customer requirements.

A very large procurement from the Air Force said that the system
"must provide the capability to process personal information
under the ... Privacy Act of 1974 [and] to process defense clas-
sified information ..." without giving much of any criteria for
what that meant. It said that "An access control mechanism which
denies unauthorized access and allows authorized users to selec-
tively share data files without violating established access
authorizations ... must be provided" without saying what consti-
tutes an authorized access. The initial version of the RFP asked
that user identifiers and passwords be up to 10 characters long
and be system-generated, but a later re-issue of the RFP deleted
those requirements.

A Navy RFP specified that the system shall include "functions to
establish relationships between password/identifiers and any data
base or file." Nothing about what that relationship should be;
nothing about security assurance. Another Navy RFP specified
that "It is desired that the system provide multi-level security
operations; i.e., it shall be possible -- under NSA regulations
-- to process unclassified and classified jobs concurrently."
Not providing that would entail a penalty of $1,000,000 in the
first month of the life cycle cost estimate of the system. I
don't know of any regulations even being contemplated by NSA
regarding Navy multi-level security.

Our commercial customers naturally seem to be even less demanding
than our government ones. This includes, for instance, financial
institutions, service bureaus, manufacturing industries, or air-
lines. The major requirements we do see here derive from the
various privacy acts of the countries we do business in, and
these are met with slight modifications to existing software.

Now, to summarize what I've just said: as far as I know -- and
I've done some careful checking -- we have not lost a procurement
-- or even declined to bid on one -- because our systems could
not meet the customer's computer security requirements.

Other Computer Security Developments at Sperry Univac

In addition to this main thread of the security developments con-
cerning the series 1100 systems there have been several other
activities throughout Univac related to security. In a sense,

H -15

these parallel my career through the company, but I do not want
to take credit for them.

I started in this computer security business back in about 1972
while I was in our Defense Systems Division. At that time my
main technical expertise was in interactive computing, especially
graphics. For some reason I was visiting in the Boston area and
wanted to stop by AF ESD to see what the latest in computer
graphics was; my contact said, "We aren't doing much in computer
graphics anymore, but we have this guy who is really gung-ho to
talk to computer manufacturers about computer security.". That
guy was Roger Schell.

Not long after, we started a small project on company IR&D funds
to learn about computer security. We ran into two problems -- we
never made enough progress that we could interest someone like
ARPA or NSA in giving us real money, and the Navy still seemed

(to us) to be of the view that computers on ships were isolated
out in the middle of the ocean and had no security problems.

Anyway, in mid-1973 I was drafted by headquarters to move from
the Defense division to our commercial division in Roseville to
work on a project that was developing a completely new product
line. The goals were ambitious, but there was excellent manage-
ment support. Amongst many other things, the system was to have
all the security architecture features anyone would want --
descriptors, virtual-memory, stacks, domain-protection, program-
med entirely in a modern high-level language. We managed to get
many people to understand what a security kernel was. We hired
Jim Anderson as a consultant -- a process that required approval
by the President of Univac. But we had to deal with a fundamen-
tal fact of life -- the new system would not be compatible with
the existing well-established series 1100 or 90 machines,
although we did intend for it to support multiple virtual
machines, some of which would emulate the old modes. We did know
when we began the project that one over-riding constraint on it
was that of preserving our customers' software investment. Ulti-
mately, we could find no convincing way to overcome that hurdle
on a radically innovative hardware architecture and the project
was cancelled after over five-years of work.

It was shortly after the cancellation of this project -- and
partly as a consequence of what we learned during it -- that our
management recognized we did indeed need to better focus the
attention paid to computer security issues. It was at this time
that I was appointed to my current position with the responsibil-
ity to over-see all computer security activities.

The same recognition that the best way to move forward would be
to have a new architecture surfaced in our newly-acquired mini-
computer operations a year or two later. In some ways, that
effort made even more progress: it had as a stated goal the need
to support DoD multi-level security (in the full meaning of
that), had in fact programmed a rough-cut at the security kernel,

H-6

and was starting to inquire about obtaining formal specification
and verification tools or services from outside suppliers.
Things were going well enough that we took DoD up on its offer to
look over our shoulder in an informal security evaluation.
Unfortunately, much the same fate overtook this project: the
need for preservation of the existing customer base, experience,
and software led to its cancellation.

Future Developments

Both of the cancelled projects I've just mentioned were not
wasted investments. We learned a lot -- not just about security
-- and the results of that learning are being directly applied to
several future products of a more evolutionary, rather than
revolutionary, nature. Without giving away any company secrets,
let me tell you some about them.

We are making a number of changes to the series 1100 operating
system and the hardware architecture with security specifically
in mind, although we are doing these things for many other rea-
sons as well.

First, we will be enhancing the hardware -- in an upward-
compatible way -- to add what some of you would understand as a
segmented capability addressing structure, with a domain protec-
tion scheme. This will give finer control over accessibility,
allow the more flexible creation of protected subsystems, and
regularize interfaces so that state-switching can be made faster
through specific hardware assists. There will also be a virtual
machine facility that at least gives us the option of doing a KVM
kind of system.

Secondly, we are restructuring the operating system. Although it
already attempts to have as much code outside of privileged mode
as possible, much more will be broken out and placed into sepa-
rate domains that have only exactly as much privilege and acces-
sibility as required. We are using more rigorous (but not yet
mathematically formal) specification and configuration management
tools.

We are also well-along in creating a massive computer-based model
of the existing software to document its internal and external
interfaces and data structures. This includes not only the exec-
utive itself but also the data management system, utilities, com-
pilers, etc.

A second development is taking place in our communications proc-
essors. The hardware has been modified to explicitly recognize
the kind of job it is doing -- i.e., it has data structures spe-
cifically designed to take care of messages and queues of
messages. In particular, coupled in an unaccegsible way with a
message are address descriptors that govern exactly what kind of

11-7

access any code processing a given message needs to have; this
includes the micro-processors that are attached to each communi-
cations line. The hardware is now designed so that the software
can be structured into many small procedures, each of which can
only access small parts of memory and can only call specific
other procedures. The planning people in Salt Lake City are set-
ting their security goals for the software that will use that
hardware; the requirements contain strong words about policy,
mechanism, and assurance that were directly influenced by the
kinds of things being talked about at these seminars.

Our just announced system-80 machines already have a more useful
architecture for protection than that of their ancestors and fut-
ure improvements are well underway.

Concluding Remarks

To summarize, Sperry Univac is a large company, with diverse
interests, customers, and products. I hope I have been able to
give you an accurate and instructive picture of how we perceive
the computer security problem and are responding to it.

We are closely following all the research activities discussed at
these seminars, but can't yet commit ourselves to their applica-
bility. This is a very expensive business to make experiments in
-- a small kernelized secure text-editor, filing system, and desk
calculator can in no way be viewed as a pilot-plant for a large
centralized corporate database system.

I thank you for this opportunity to share my thoughts on the sub-
ject. Notice that we all will have a second chance this after-
noon to raise some of these questions in even more detail.

H-8

How Can the Government and the Computer Industry

Solve the Computer Security Problem?

A Panel Discussion

Ted Lee, Sperry Univac
Jim Anderson, Consultant

Steve Lipner, Mitre
Marvin Schaefer, SDC

Bill Eisner, CIA

[At the Second Seminar on the DoD Computer Security Initiative Program,
January 15-17, 1980, Ted Lee - attempting to speak for the computer indus-
try - and Jim Anderson - attempting to speak for the government --
presented a "dialogue" on the subject of "What every vendor always wanted
to know about government computer users' security needs (but was afraid to
ask)" There was considerable audience interest in the dialogue, but little
time for audience participation. In fact, the interest was so strong that
we have invited them back again to pursue the issues in more detail, with
more time for audience participation, and we have put three additional peo-
ple on the panel to ensure that all viewpoints are heard.]

[At the last seminar Lee and Anderson were guided by a list of questions
and answers that had been prepared in advance - the questions obtained
through an informal canvassing of several vendors, the answers written by
Anderson. For this seminar, the major points of those questions have been
reduced to ten questions, which are printed below. The answers will come
from the panel.]

[All participants are speaking as individuals out of their own experience
and do not necessarily represent the views of their respective organiza-
tions.]

1. We are generally talking about the data security needs and desires of
"the government computer user." Is it meaningful to undertake such a dis-
cussion - i.e., is there a "typical government computer user"? Does he
care about cciputer security? How does a vendor discern the computer
security needs of that user? Are those needs unambiguously documented in
accessible forms, consistent throughout the government? And does responding
to them REALLY make a difference (now or ever)?

2. What kinds of applications for cclputers - e.g., communications,
transaction processing, data management, process control, general user-
programmable data processing - and what kinds of configurations - e.g.,
networks, centralized, distributed - are going to have the most severe
computer security requirements? Which are of lesser importance? And what
portion of the total usage of computers does each represent?

J-1

I,.L -,lll-il

3. In various forms and in various places, such as in DODR 5200.28, AR
380-380 or NBS Special Pub 500-57, attempts have been made to categorize
computer systems into a small number of classes of increasing sensitivity
based on factors like the amount and mix of classified or other sensitive
information involved, how benign the physical and personnel environment is,
and what kinds of interaction with the system are allowed. Without arguing
about the details of any particular categorization scheme, what mixes of
data sensitivity, user trustworthiness, and application environment is it
going to be important or highly desirable to support? (e.g., is it meaning-
ful and important to think about handling Top Secret information on a sys-
tem with same people having only Confidential clearances programming in
assembly language?)

4. In the first question we asked generally about whether the "typical
government computer user" knew and could express what he needed or desired
in the way of computer security. Specifically then, what kind of security
policy DOES that user want his computer system to support - i.e., what
rules should it enforce? What information is to be used in enforcing the
rules? How is the system to interface with the manual world (e.g., marking
of output)? And what kind of auditing procedures are to be supported? How
fine a granularity (e.g., file, record, field within record) are the rules
and other measures to be applied to?

5. How badly does he care that the policy discussed above be applied?
What is the perceived importance of the possible threats to it? (e.g., ex-
ternal physical attack, active or passive wiretapping, human error or cul-
pability, malicious legitimate user - cleared or not -- attempting techni-
cal subversion of the operating system, collusion through Trojan Horses and
covert channels, or trap-doors planted at the vendors hardware or software
factory?) -

6. We are all generally aware of the efforts being made to establish sane
form of government bureaucratic apparatus for certifying the trustworthi-
ness of ccputer systems. Will this really happen? When? Where will it be?
How will it operate? Will the criteria it applies look much like the draft
criteria that now exist? Will it truly be able to make a more standard
approach to computer security possible throughout the government? What
effect will it really have on future procurements - both inside and out-
side the government? (And, how reliable are the answers to those ques-
tions?)

7. Same aspects of the technology and the certification criteria being
developed imply radical changes in the way vendors develop their systems
and how they interact with at least their government customers. lb what
extent is the government going to need closer scrutiny of a vendor's inter-
nal development operations? Will it be able to do so in an impartial way
and without directly or indirectly -- for instance, by the way it words a
procurement - revealing proprietary information of one vendor to another?
What aspects and physical copies of a highly trustworthy computer system
are going to need to be treated as classified? Who will have the responsi-
bility for maintaining the security kernel software? What new export con-
trol restrictions will apply to this new technology?

I-:I

8. A significant amount of new software technology is involved in the
current government-fostered development of "secure computer systems." Of
the various options being currently explored - security kernels on more-
or-less conventional architectures, capability architectures, encryption as
a substitute for other forms of security, different specification, verifi-
cation, and implementation tools and languages - will any particular ones
emerge as "best" (either through natural selection or through government
fiat)? Will computer security technology ever be good enough that less
attention needs to be given to other forms of security?

9. Are the current R&D efforts credible? - they ignore hardware and
micro-code problems, appear to have grossly unacceptable performance penal-
ties, and are perceived to have been done on only limited purpose or "toy"
systems. What about enforcement of "need-to-know" principles and other
rules in addition to the over-simplified partitioning of the world into a
few security levels and ocmipartments?

10. What is the economic impact of all these coq:iUter security develop-
ments - i.e., how much are users willing to "pay" for security (including
inccmpatibility, overhead)? Does it make sense for a vendor to attempt to
offer security as a (possibly high-priced) option? When will strong
requests for security show up in RFP's? What kind of marKet forecast could
one make -i.e., $ value of systems to be bought in each of the years 1980-
1995 at each of the levels 0-5 of the Mitre TCB evaluation criteria?

1-3

OPENING STATEMENT

COMPUTER SECURITY

(S. B. LIPNER)

In late 1970--just about ten years ago--I returned from a field
assignment and was asked by MITRE to look at the computer security
problem. At the time we were looking at needs for a multilevel

secure time-sharing system and a multilevel secure command system--
both at unclassified through secret levels. Neither system has yet
gone operational as required, though in the intervening years we did
achieve some significant things. As far as I'm concerned three of

the most significant (in no special order) were:

(1) The development of the Bell-LaPadula (star-property) model

and a set of formal techniques for proving that system
security complies with the model;

(2) The development of a Multics time-sharing system that
embodies the *-property (but is not proven) and is in
multilevel use today (though all users have some level of
clearance); and

(3) The development of a prototype security kernel for the
PDP-11/45 that was subject to limited proofs of compliance
with the *-property and demonstrated in simulated

multilevel applications.

In the early seventies if we talked to industry about security,
the responses we got were "if you just tell us your requirements,
we'll meet them". I think those responses were oversimplified. If

the requirements are the star-property and proofs nobody in industry
is enthused about meeting them. And I'm not sure whether they

should be or not.

I do think a lot can be done to make systems better for many

requirements. The Multics effort--adding the star-property,
plugging the holes, and limiting the risk--is a neat example. I'm

not sure that industry is really seizing on that example and
emulating it to give customers more choices. I'm also not sure that

the government is emphasizing the utility of such systems.

I also worry about security kernels. The original kernel idea
(from the Anderson Report) was to have a mechanism that was always
invoked, tamperproof and small enough to be subject to complete

analysis and tests. Our prototype for the PDP-11/45 and Jerry
Popek's were about 1000 lines of HOL each. KSOS-11 is around 10,000

lines. Some of that growth is for efficiency and real-world

features. Some is the introduction of neat advanced operating

[-4

-A- I

system concepts that may not be necessary for a small simple secure
kernel. I wonder if our desire to do things in the neatest, most
advanced way has compromised otir ability to adhere to the original
Anderson Report principles. I read Lee Schiller's kernel (cover to
cover) one night in a hotel room. A proof has to be awfully good to
be as convincing as reading and comprehending the entire kernel.

Since leaving the security business in 1976, I've been working
on acquisition of fielded systems for the Air Force. Security has
raised its head a few times and I've thought of the option of
building a kernel for the job. I've always avoided that option in
favor of the best off-the-shelf approach available--even if that
approach was less secure than I'd like or operationally painful.
The cost and schedule risk of building a kernel for a real fielded
system has just been too great. But I've been dissatisfied both
with what I've had to do and with the quality of the options
available to me. If there were more products comparable to the
Multics system I mentioned above in level of security (not in
specific features) I'd have been much happier with my options and
results. This represents a reversal from positions I took in
1973-75--but a realistic one. And if there were off-the-shelf
usable kernels that, of course, would be great. The important point
is that off-the-shelf options will get used while development gets
avoided.

I'd like to think that some synthesis would occur merging the
advanced security ideas with the needs of the broader market and the
realities faced by industry. Everybody can compromise some and
still get significant improvements in capability and security. The
important thing is off-the-shelf capabilities available to a user.
I hope these conferences are a step toward dialogue, compromise and
the delivery of more real systems.

1-5

Pr AD-AL01 996 DEPARTMENT OF DEFENSE WASHINGTON DC F/s 9/2

1980PROCEEDINGS OF THE SEMINAR ON THE DOD COMPUTER SECURITY INITIAT-ETC(U)

UNCLASSIFIED NI
23 fllflfflflfflfllflf

EI/EEEI//EEEI
EI//E/I/EE///I
////EEE//EEEEE
//EE//I/E///IE
//E////I/EEEEE
EIEE////EE/II

Quality Assurance
and Evaluation Criteria

Grace H. NibaJ-di

MITRE Corporationl

Problem

Flow doe" One Build Q..alitV Trusted Software in
the Face (l:

I -rq.. , omple, operating "ferls

t -ilk' ").~abe oPuler vm.,m

Solution

Intestraled Software Engineering Approach
Inc orporAting:

Me, hanmmn
Assuank e

J- 1

Policy

Mechanism - Trusted

Comuplete

belatea

Assurance

Safthife Lie-cycle
Sytem, requirements

Code and deb~ug
Testing
Operations and mtaintenance

J-2
b

Assurance

Software Develoemt Approaches

StU I~E(MN PI(FA I1O

Evaluation Criteria for
Trusted Systems

0 No protection
I Uimited access control
2 Extensive nmdatorfj security

3 Structured proection mnechanism

4 Design v'erification

5 Code verification
6 Hardware specifications

Policy

I Acces Ceetwols

2 Ohecroemy Seru4t,

2 Msayo Secnftt

2 Dirmll of Service

J- 3

Mechanism

2 okni, .oa,

So oo.qWo Ioh Iloq..

- w.p.-n 2 Lto~ oocg4 .44 ~I0

),-AI of ss. . WA"g
ofS.o. g3

4
,

3
g
44

bbM.k

Assurance

I Good o"m prsgoe g Dow,,Vq 41. Floigr...

3 54.gocggnd nuhodofos, I Fgoguoa gogg 4 Aoo-og

3 Iopd o. A Wg 3 Bood - TLS 5Cod. soj... P-f.

sr.'&A-o. T-o c- -.wrgg 6 Obf~pc -od Io -o pmofs
I (op.4rf 6.w 4 F-.' TLS
4 F.-W. 115 S PFo.k. .1 6oo ft~c s,,- .rcW,.d TLSg 1

OHIO or. &go ~.gg aoofc

--fo od psosoo-oo

Assurance

-S

J-4

Assurance

Formal specifcatiom

Assurance

Methodogy
VetifAbl umpkmwntation

Assurance

Ten cwpmw

Penetmdan enuqh

.3-5

Objet code to source code

To Come

Specifcaldoa & Wenikabiu Otvevtiew

Specifcadoll & Verncotioll 3mlarchau

Softwamme Tesin Ov'rv4ew

Trse Swesae Developers

Goals of This Seminar

ROSE CA Verwscadon in Secudety

J-6

Specification and Verification
Overview

William F. Wilsca'

MITRE Corporation

Questions

What is formal veificatioun?

What properties can be proved about a ssv.ten,
desig"?

What properties can be proved about an

The Problem

K-1

The Problem Dissected

Software Development Approaches

EQUREMENTS DIN OR PROCT
SP CFICATIOI D N SECCA1"SPECIFICATION

REQUJREMENTS CODE

FORMAL FORMAL
SECUEInV SPECK ANION
M4ODFL

Types of Models

Access Control

Considers subjects and objects
Requirements:

a) It S has read access to O, securit - level (S) >
security - level (0)

bI S has write access to 0. security - level (S)!5

seurity - level (0)

Flow Aslji
Considers system variabhes

Requirement:
If information can flow from A to B, seturil, - level (AP5

weuritV - level (B)

_J

K-2

'5

Formal Specifications

State Mac16in.
Relates values of wariables before aMW after operations
Esample

Excbartge (X. Y)
Ny.. - value W(X(
Ness - aium IY) k.

Algebrak

Relates rests of sequences of operations

E v hanqe (Exchanwe (PaW) =Pair;
First (Etchange (Paw)) =Last (Pair);

L-Aso tExchange (Pair)) =First (Pair);

Levels of Specifications

Stepwia. Refinentn
Lower Iew~ls describe the samte operations in greater detail

Helrarchical

Lower levels describe operations used to impiernent

Design Verification -
What is Proved?

Peri ofl Couht"CV B"tweam Modl awd
s-w-e.

State invariants

Tranition properties

Model is appropriate

Specification ts complete

K- 3

Desisn Verifcation -
Practical Ciusideratious

Us~ Done wk Antmatk Therowi

Easier Am CAWW Vewirdiles

Cms be Ussd ujibet Coda Vericua.e

Nnot heas Early Part of Saftwoe aeg

Code Verification

Entry Asertion 1 O j 0

program exchange

Exit Aseerion 'final Jstart

JfinaI 'start

Prove Nf the entry assertion is true when the program
be i, the exit aseertuou wW be truer when the
program ends

Inductive Assertion Method

Istrodce Intermediite Aeton
Asuertion 0 (Entry)

Code 0
Asserion I
code I

Assertion N- I
Code N- I
Assertion N (Exit)

Provo: N Aeserties I in True, then Assertio I~ I -- N
he True After Code I is 3ms.

Veriffcation Cotau

K-4

A- 6-

Loops !

I - A -'

L-El

Code Verification-
Practical Considerations

Harder diea Dow"g Verifialioa
Maty 6" verfication condior

Need loassrin

Practical Ouly for Critical (Snall) Portions of Code

Requires Automatik iTeorem Provers

Part of the Software Developmeut Proces

[
Role of Automatic Theorem Provers

Man Lo"g Theoaeme to Prmw*

R"eatable Rusults

K-5

ILi

Summary,

Formal Verificafies: Proof of Consistency

Design werification:
Consistency betisen model and specification
Ases

Model is appropnate
Specificatin is complete

Code v'erifiaion:

Consistency between specification and implenentation
Assumes,

Specification is apropriate
Inmplenmentation Language is coneecily defined

K-6

FDM - A Specification and Verification Methodology

Richard A. Kemmerer *
System Development Corporation
Santa Monica, California 90406

1. Introduction

System Development Corporation's Formal Development
Methodology (FDM) i s a n integrated methodology for the

design, specification, implementation, and verification of
software. FDM enforces rigorous connections between succes-
sive stages of development. The FDM is used as follows:

1. The correctness requirements for the software are
modeled.

2. A top-level design specification is written and ver-
ified to be consistent with the model.

3. The design specification is repeatedly refined to
include more detail until a program design specif-
ication is derived.

4. The intermediate design specifications and the pro-
gram design specification are verified as the
refinement process is carried out.

5. An implementation is coded from the program design
specification and this implementation is verified
to be consistent with the program design specifi-
cation.

By verifying that specifications are consistent with the
model, design errors are detected immediately rather than
during implementation verification.

A key point about the FDM is that all theorems to be
proved about specifications and implementation are generated
automatically by the verification system. In addition,
development stages are integrated: the output of one stage
is used as the input to the next; a user need not massage
the data into the format neeled for the next stage. Furth-
ermore, since all tools run on the same machine, the output
from one tool is written directly on a file used as input to
another tool.

2. The Components of FDM

Four basic components comprise the FDM verification
system. These are the Ina Jo specification language, the
Ina Jo processor, the interactive theorem prover (ITP), and
the v.-rification condition generator (VCG). Each component

Richard Kemmerer is a consultant to System Development
Corporation working on enhancements to the FDM. lie is
an Assistant Professor in the Computer Science Depart-
ment at the University of California, Santa Barbara.

L,-I

is discussed in detail in the following sections.

2.1. The Ina Jo La n&uAe

The Ina Jo language is a non-procedural assertion
language that is an extension of first-order predicate cal-
culus. The language assumes that the system is modeled as a
state machine. Key elements of the language are types, con-
stants, variables, definitions, initial conditions, cri-
terion, constraints, transforms, modules, levels, and map-
pings. The following paragraphs contain examples of some of

these elements. An Ina Jo Specification that contains these

examples is presented in Appendix A.

Some examples of types are:

type element,
subject(element,

access (read,write,append,exec),

accesses = set of access

The type element is an unspecified type and subject is an
unspecified subtype of element. The only operation that is
defined on unspecified types is equality. Access is an
enumerated type with four possible values, and accesses is a
set of type access. The only primitive types in Ina Jo are

integer and boolean.

The initial condition is an assertion that must hold
for the initial state of the system. The following initial
condition specifies that initially no subject has access of
any type to any object.

initial A"s:subject,o:object

(accessesallowed(s,o) = empty)

The correctness requirements of the system are modeled
in Ina Jo by the criteria. The criteria was originally a
conjunction of assertions called criterion that specified
what was a good state. These are often referred to as state
invariants since they must hold for all states. In the pro-
cess of specifying real systems it was found that it was
often necessary to include restrictions on the relationship
of one state to the next in the model. To meet this demand
a constraint was added to the criteria. The constraint is
an invariant about state transitions that compares the old

and new states. Thus, although it is not in agreement with
the English language an Ina Jo correctness criteria is made

up of the conjunction of the individual criterion and the
constraint. The following example of a criterion specifies
that for all subjects s and objects o if s has write access
to o, then the class of s is equal to the class of o and the

category of s is equal to the category of o.

L-2

A" s:subject, o:object(
write(:accesses _ allowed(s,o)

-> class(s)=class(o) % catg(s)=catg(o))

An Ina Jo transform is a state transition function it
specifies what the values of the state variables will be
after the state transition relative to what their values
were before the transition took place.

Only a subset of the Ina Jo language has been presented
here. A complete description of the language can be found
in the Ina Jo Reference Manual [LSS 80] and in the tutorial
overview [Egg 801.

2.2. The Ina Jo Processor

The Ina Jo processor reads specifications written in
Ina Jo and produces theorems to be proved by the interactive

theorem prover. Two types of theorems are generated by the
processor: consistency theorems and correctness theorems.
Consistency theorems guarantee that the effect of a
transform is not false, that defined terms are well defined,
that type restrictions are observed, and that mappings are
consistent. These theorems are usually existentializations.
For instance, if the effect part of a transform contains
N"x=x+l and N"x=x then a theorem is generated stating that
there exists an element of the type of x that satisfies
these two conditions. Since this reduces to false the
specification cannot be proved consistent.

A number of correctness theorems are generated by the
Ina Jo processor. One states that the initial conditions
satisfy all of the criterion. This guarantees that the sys-
tem is initially in a good state. In addition, for each
transform in the top-level specification a theorem is gen-
erated that guarantees that the transform satisfies the cri-
teria. This theorem states that if the old state satisfies
all of the criterion then the new state will also satisfy
all of the criterion, and that the relationship between the
old and new states satisfies the constraint. Since the ini-
tial state is shown to satisfy the criteria, and following
any transform that starts in a state that satisfies the cri-
teria the new state satisfies the criteria, by induction one
can conclude that all states satisfy the criteria.

In addition to the theorems generated for the top-level
specification, it is necessary to generate correctness
theorems that guarantee that each lower-level specification
correctly implements the corresponding higher-level
transform with respect to the mappings.

Finally, it is possible to introduce transforms at the
lower levels that do not correspond to any transform at the

L-3

Lmen

level above; it is necessary to generate correctness

theorems for these transforms that guarantee that they
satisfy a mapping of the criteria.

In addition to generating consistency and correctness
theorems the Ina Jo processor must generate entry and exit

assertions for each of the high order language procedures

that implements a transform in the program design specifica-
tion. To do this the Ina Jo processor needs to know how the
objects of the lowest level specification (program design
specification) map on to objects in the high order language
(HOL) implementation. This is provided by the implementa-

tion specification which is nothing more than these map-
pings. Thus, the Ina Jo processor for this step in the

verification process accepts as input the program design
specification and the implementation specification and out-
puts the entry and exit assertions for the HOL procedures

that implement transforms of the program design specifica-
tion.

2.3. The Interactive Theorem Prover

The interactive theorem prover (ITP) aids the user in

documenting the proofs of long theorems. The ITP uses the
principle of reductio ad absurdum (proof by contradiction).
That is, the first step in the proof process is for the ITP
to automatically assume the contrary and the user then
proceeds to show that this assumption reduces to false.

The design of the ITP adheres to the following objec-
tives: all proofs must be automatically checked for sound-

ness, the user must be in complete control, the output must
be in a format that can be audited, and the user must be

relieved of typing voluminous amounts of information that
can be typed by the theorem prover under user direction.

The following paragraphs discuss how these design objectives
have been met.

Each time the user directs the ITP to perform a step
the ITP checks its knowledge base to see if the step is log-
ically sound. If the step is not logically sound it will
not be performed and the user will be notified.

The proofs are written in a human-readable form by
adopting a Dewey Decimal like line numbering scheme that
indicates the step sequence in the proof as well as the
nesting level. That is, each time a new step of the proof

is executed the last part of the line number is incremented

by one. In addition, each time a theorem is needed to com-
plete the proof the user states the theorem and the current

line number has a decimal point and a one appended to it to
arrive at the next line number. Thus, each decimal point

indicates the nesting of theorems being proved. When the

proof of a theorem is completed the last decimal point and

L-4

any numbers following it are removed. The proofs are also
made more readable by appending English justifications to
each proof step. For instance, when the ITP automatically
assumes the contrary this step has "ASSUME" appended to it.
Also, if a result of false is derived from contradicting
statements at steps 11.3 and 11.12, then this step has
'(11.3 11.12)CONTRADICTION" appended to it.

The ITP accomplishes automatic deductions by generating
corollaries to proof steps. These corollaries are numbered
with the proof step number followed by a hyphen and then an
integer value (see example below). An example of when
corollaries are generated is when the proof step is a con-
junction of predicates and the ITP automatically and splits
these into the individual conjuncts each as a separate

corollary. Although the ITP performs most deductive steps
automatically, it never enters into lengthy excursions to
heuristically discover deductions. For instance it never
attempts substitutions unless the user requests a particular

substitution.

To give an example of the numbering scheme and the
proof by contradiction approach consider the following
scenario. After executing proof step 99 the user realizes
he would like to have a theorem to use in the proof; there-
fore, he states this theorem as step 100.

100 HI 4 12 4 H3 -> Cl 4 C2

The theorem consists of three hypothesis H1, H2, and H3 and
two conclusion C1 and C2. Since the ITP uses the method of
proof by contradiction it automatically assumes the con-
trary. In addition since the proof of this theorem intro-
duces a new level the next line number is the previous line
number with ".1" appended to it. Thus, the next line is

100.1 H1 12 4 H3 4 (-Cl I -C2)

Next the ITP automatically and splits this conjunction get-

ting the following four corollaries.

100.1-1 Hi
100.1-2 H2
100.1-3 H3
100.1-4 -C1 I -C2

The user next proceeds to prove that -Cl is false and that
-C2 is false which yields corollary 100.1-4 to be false,
which reduces 100.1 to false, and thus proves the theorem
stated at line 100.

A detailed discussion of the ITP can be found in the
ITP User's Manual (Sch 801.

L-5

4-L-

2.A. The Verification Condition Generator

For the verification process to be complete, it is
necessary to perform code level proofs in addition to
specification verifications. To meet this need a verifica-
tion condition generator (VCG) for Modula is currently being
built. The VCG accepts as input the asserted HOL code of
the implementation and the entry and exit assertions output

by the Ina Jo processor. The output of the VCG is the
verification conditions (theorems) that assert that each

subroutine satisfies its exit assertion assuming that its
entry assertion holds at the point of invocation. The
verification conditions output by the VCG are used as input
to the ITP which is used to prove them.

3.* Applications of the FDM

The FDM has been thoroughly tested on a variety of
real-world problems. Most noteworthy of the systems to

which the FDM tools have been applied include:
1. An operating system kernel for KVM/370
2. Three kernels for a secure network system

3. A capability based Secure Transaction Processing

System (STPS)
4. A system for automating the periods processing for a

large scientific processor using a Job Stream

Separator (JSS) approach

5. A secure network front-end

For KVM the kernel as well as four trusted processes
running on the kernel had top-level specifications written
and verified. The top-level specifications are to be
refined to lower level specifications which will also be
verified.

The specifications for the second system were written
by non-SDC personnel. These specifications included top-

level specifications for three different kernels of which

each node of the system was comprised. Each of the specifi-

cations was verified to be consistent with i'ts correctness

criteria.

For the STPS there were three levels of Ina Jo specifi-
cation written of which the top two were verified to be con-

sistent with the STPS correctness criteria.

There are presently two levels of specification written

for the JSS. The top-level specification has been verified
and the second level specification is in the process of
being verified. The code for this system is being written

in Modula, and the Modula VCG will be used to perform code

level verification of the system.

The specification and verification of the secure

L-6

I

..I

network front-end is also currently in process. This system
includes an executive and twenty trusted processes. At the

present time the top-level specification for the executive
has been written and verified and the second level specifi-
cation is being written. In addition top-level specifica-
tions for two of the trusted processes are being written.
Parts of this system may be verified down to the code level.

4. Conclusions

The Formal Development Methodology is a specification
and verification methodology that is well integrated and
rigorous. FDM is capable of performing verification against

a variety of correctness criteria without requiring any
changes to the tools. The methodology has been successfully
applied to a number of complex real-world systems. Although
to date none of these verification efforts have been carried
to code level, this will be done in the near future. FDM is

a useful methodology for systems that warrant the cost of
formal verification.

5. AcknowledKments

The principal designers and implementors of the FDM and
its tools are John Scheid and Val Schorre. Also currently
active in enhancements to the tools are Sue Landauer and
Paul Eggert.

6. References

[Egg 80] Eggert, Paul R., "Overview of the Ina Jo Specifica-
tion Language," System Development Corporation
document SP-4082, October 1980.

[LSS 801 Locasso, R., J. Scheid, V. Schorre, and P. Eggert,
"The Ina Jo Specification Language Reference
Manual," System Development Corporation document
TM-(L)-6021/001/O0, June 1980.

[Sch 80] Schorre, V., "The Interactive Theorem Prover (ITP)
User's Manual," System Development Corporation

document (in preparation).

L-7

Agpodix - ASpecification Examyle

00010 $TITLE EXAMiPLE
00020 SPECIFICATION EXAMtPLE
00030 LEVEL TOP-.LEVEL
00040
00050 TYPE ELEHENT,
00060 SUBJECT < ELEMENTP
00070 OBJECT < ELEMENT

0009 TYPE ACCESS a (READ# WRITE# APPEND, EXEC)p

00100 CLASSIFICATIONP
00110 CATEGORY
00120
00130 TYPE CATEGORIES a SET OF CATEGORY,
00140 ACCESSES u SET OF ACCESS
00150
00160
00170 CONSTANT
00180 CLASS(ELEMENT):CLASSIFICATIONP
00190 CATO(ELEMiENT) :CATEGORIES
00200
00210 CONSTANT
00220 OK...TO..RITE(SSUBJECTO:OBJECT) :BQOLEAN
00230 CLASS(S) aCLASOCO)
00240 9 CATS(S) *CATO(O)

00250
00260
00270 VARIABLE
00280 ACCESSES-SALLOWEDCSUBJECTOBJECT) 3ACCESSES
00290
00300
00310 INITIAL
00320 AOSSUBJECT ,OWBJECT (ACCESSES..ALLOWED(SPO) *EMPTY)
00330
00340 CRITERION
00350 A'SZSUBJECTPQ3OBJECT(
00360 C WRITE <Z ACCESSES-.ALLOWED(SPO)
00370 ->CLASS(S) a CLASS(O) I CATG(S) n CATOCO))
00380)
00390
00400 TRANSFORM GET..RITE-ACCESS(S;SUBJECTOWOBJECT) EXTERNAL
00410 EFFECT
00420 A'SI;SUBJECTv01:OBJECT(
00430 N&ACCESSES.ALLOWED(SIPOI)
00440 C OK..TO.WRITE(SvO)
00450 a StI *S
00460 a 01.a0
00470 ACCESSES..ALLOWED(SIPO1) 11 S*(WRITE)
00480 0> ACCESSES..ALLOWED(SIPOI))
00490)
00500
00510 END TOP-.LEVEL
00520

00530 LEVEL SECOND-.LEVEL UNDER TOP-.LEVEL
00540
00550 TYPE ELEMENTP
00560 SUBJECTI < ELEMENT.
00570 OBJECT < ELEMENTo
00580 SUBJECT2 < OBJECT
00590
00600 TYPE
00610 ACCESS - (READY WRITE, APPEND, EXEC)v
00620 COM-.ACCESS - (READY WRITE).
00630 CLASSIFICATION - (UNCLASSIFIED. CONFIDENTIAL.
00640 SECRET. TOP..SECRET)t
00650 CATEGORY
00660
00670 TYPE CATEGORIES - SET OF CATEGORY.
00680 FILE-ACCESSES -SET OF ACCESS,
00690 COM..ACCESSES -SET OF COM-ACCESS
00700
00710
00720 CONSTANT
00730 CLASS(ELEMENT) CLASSIFICATIONY
00740 CATG(ELEMENT) :CATEGORIES
00750
00760 CONSTANT
00770. OK-.TOWRITES:SUBJECT1O:OBJECT)l:BOOLEAN-
00780 CLASS(S) - CLASS(O)
00790 £ CATO(S) a CATG(O)
00800
00810 VARIABLE
00820 ACCESSES-.GRANTED(SUBJECTI mOBJECT) :FILE-ACCESSES.
00830 COMMUNICATION-.ACCESSES(SUBJECTI.SUBJECT2) COM..ACCESSESP
00840 ACTIVE-.USERI (SUBJECTI) BOOLEAN.
00850 ACT IVE-.USER2(SUBJECT2) :DOOLEAN
00860
00870 INITIAL
00880 A'EI.E2:ELEMENT(
00890 ACCESSES-.GRANTED(E1.E2) = EMPTY
00900 & (E'SI:SUBJECTIPS2:SUBJECT2(S1 El & S2 -E2)

00910 ->COMMUNICATION-..ACCESSES(ElvE2) -EMPTY)

00920
00930 & AoSl:SUJECTI("ACTIVE-.USER1CSI))
00940 1 AOS2:SUBJECT2(ACTIVE-~USER2(S2))
00950
00960 TRANSFORM GRANT-.SEND(S1 :SUBJECT1 ,52:SUBJECT2)
00970 EFFECT
00980 A*T1:SUBJECTIPT2:SUBJECT2(
00990 NOCOMMUNICATION-.ACCESSES(T1.T2)
01000 (OK-.TO-.WRITE(S1,52)
01010 & ACTIVE..USERI(S1)
01020 & ACTIVE-.USER2(S2)
01030 & Ti a S1
01040 & T2 a S2 0>
01050 COMMUNICATION-ACCESSES(T1,T2) li S'(
WRITE)
01060 <>COMMUNICATION..ACCESSES(T1,T2))
01070
01080

L -9

01090 TRANSFORM GRANT-.WRITES:SUSJECT1PO:OBJECT)
01100 EFFECT
01110 A'Sl;SUBJECTlv01;OBJECT(
01120 N'ACCESSES-.GRANTED(SIO1)
01130 (OK-.TO.WRIE(S,0)
01140 £ AS2%SUBJECT2(S2"0O)
01150 9 Sl -S
01160 & 01 a 0 =
01170 ACCESSES-.GRANTED(S1,O1) 11 S'(WRITE)
01180 ACCESSES-.GRANTED(SlrO1))
01190)
01200
01210 TRANSFORM LOGOH(s:SUBJECTI) EXTERNAL
01220 EFFECT
01230 A*S1:SUBJECT1 A
01240 NOACTIVE-USERI(Si)-
01250 C Si - S a> TRUE
01260 <>ACTIVE..USER1(Sl)

01280 1 AS52:SUBJECT2(
01290 NOACTIVE-.USER2(S2)-
01300 (S2 - S => TRUE
01310 <>ACTIVE-.USER2(S2)
01320
01330
01340 MAP
01350 ELEMENT -uELEMENT,
01360 SUBJECT -- SUDJECTIP
01370 OBJECT maOBJECT,
01380 ACCESS -- ACCESS,
01390 CLASSIFICATION - CLASSIFICATION,
01400 CATEGORY am CATEGORY,
01410 CATEGORIES -- CATEGORIES,
01420 ACCESSES -a FILE..ACCESSESP
01430 READ muREAD,
01440 WRITE m=WRITE, I
01450 APPEND -- APPEND*
01460 EXEC a- EXEC,
01470
01480 CLASS(E) - CLASS(E)p
01490 CATO(E) me CATG(E)p
01500 OK..TO..RITE(SPO) a- OK-.TOWRITE(S,0)v
01510
01520 ACCESSES-.ALLOWED(SPO) on
01530 (ES2:SUBJECT2O0 a S2) =>
01540 COMMUN ICAT ION-.ACCESSES (StO)
01550 <> ACCESSES-.GRANTED(SPO))v
01560
01570 GET-..RITE..ACCESS(SvO) --

01590 (EffS2SUJECT2(S2 = 0) 0>
01590 GRAMT-.SEND(S,0)
01600 1 NCO(ACCESSES.ORANTED)
01610 <> GRANT..WRITE(SP0)
01620 Z NC@(COMUNICATION-.ACCESSES)
01630)
01640
01650 END SECOND-.LEVEL
01660
01670 END EXAMPLE

L- 10

FDM

A FORMAL METHODOLOGY
FOR SOFTWARE DEVELOPMENT

FDM

* INTEGRATED METHODOLOGY FOR DESIGN, SPECIFICATION,
IMPLEMENTATION AND VERIFICATION OF SOFTWARE

* ENFORCES ESTABLISHMENT OF RIGOROUS CONNECTIONS
BETWEEN SUCCESSIVE STAGES OF DEVELOPMENT

IDENTIFICATION AND MODELLING OF REQUIREMENTS

DESIGN SPECIFICATIONS

VERIFICATION OF SPECIFICATIONS

PROGRAM DESIGN SPECIFICATIONS

VERIFICATION OF IMPLEMENTATION

TOOLS OF FDM

9 SPECIFICATION LANGUAGE (INA JO)

- LANGUAGE PROCESSOR

- INTERACTIVE THEOREM PROVER (ITP)

- VERIFICATION CONDITION GENERATOR (VCGi

L- If

TERCS TORM

INA JO LNUG

4P STTHACIERERSNTTO

* NON-PROCEDURAL

IMANUAEPLEMENTS SSRE

SPC IN A 1 ERm N

ENR CRITEEIOT
- CONSTRAINNS

PRMODULES

-POO LEVELSC

-STT MAPINES RSETTO

- NON-POCEDURA

- TYPE ELEMENT,

SUBJECT < ELEMENT,

OBJECT < ELEMENT

* TYPE ACCESS - (READ. WRITE. APPEND, EXEC),

ACCESSES -SET OF ACCESS

- TYPE TIME INTEGER

*CONSTANT

CLASS IELEMENT): CLASSIFICATION

- VARIABLE

ACCESSES-ALLOWED iSUBJEGTO0BJECT): ACCESSE S

* DEFINE

OK TO- WRITE WSSUBJECT O:OSJECT): BOOLEAN

CLASS4S) CLASSIDI

ACATG(S) =CATGIO)

- INITIAL

A" S: SUBJECT, 0: OBJECT
(ACCESSES ALLOWED (S.01 - EMPTY)

- CRITERION

A" S- SUBJECT 0: OBJECT f

WRITE <ACCESSES ALLOWED 13S01

-CLASSIS) - CLASSIO)IIa CATG(S)- CATG4O))

*CONSTRAINT

N-TIME > TIME N EIME -0 & TIME >0

" CRITERIA -CRITERION + CONSTRAINT

" CRITERION IS AN INVARIANT ABOUT STATES

" CONSTRAINT IS AN INVARIANT ABOUT STATE
TRANSITIONS

TRANSFORM GET--WRIYE-ACCESS IS:SUBJECT. 0:OBJECTI

EXTERNAL

EFFECT

A" SI: SUBJECT. 01: OBJECT I

N" ACCESSES-ALLOWED (SI. O0l)

I 0K. TO -WRITE IS.Ol

a Si S

& 01-0

-ACCESSES - ALLOWED ISI. 01) 1 S" (WRITE)

< > ACCESSES- ALLOWED (S.OM~

MAPPINGS

*ALL TYPES. CONSTANTS. VARIABLES, AND EXTERNAL
TRANSFORMS ARE MAPPED TO THE NEXT LOWER LEVEL

*E.G..

GET - WRITE ACCESS (SO) -

IE" 52: SUBJECT2 4S2 - 0) ~
GRANT- SEND ISO01

& NC- (ACCESSES -GRANTED)

4<> GRANT--WRITE (S.0l

& NC" (COMMUNICATION ACCESSES)

L- 14

INA JO PROCESSOR

* READS SPECIFICATIONS. INCLUDING CRITERIA AND
MAPPINGS

* GENERATES CONSISTENCY AND CORRECTNESS
THEOREMS

* GENERATES ENTRY AND EXIT ASSERTIONS FOR
PROGRAM MODULES FROM IMPLEMENTATION LEVEL
SPECIFICATION

CONSISTENCY THEOREMS

- EFFECT OF TRANSFORM NOT "FALSE"

* DEFINED TERMS ARE WELL-DEFINED

- TYPE RESTRICTIONS ARE OBSERVED

* MAPPINGS ARE CONSISTENT

CORRECTNESS THEOREMS

" INITIAL CONDITIONS SATISFY CRITERIA

" TLS TRANSFORMS SATISFY CRITERIA

" LOWER LEVEL TRANSFORMS CORRECTLY IMPLEMENT
CORRESPONDING HIGHER-LEVEL TRANSFORMS WITH
RESPECT TO MAPPINGS

" LOWERLEVEL TRANSFORMS THAT DO NOT CORRESPOND
TO HIGHER-LEVEL TRANSFORMS SATISFY A MAPPING OF
THE CRITERIA

L-15

TLS TRANSFORM SATISFIES CRITERIA

* RELATIONSHIP BETWEEN OLD STATE AND NEW STATE
SATISFIES CONSTRAINT

* IF OLD STATE SATISFIES CRITERION THEN SO DO NEW
STATES

TOP LEVEL
SPECIFICATION

SECOND-LEVEL
SPECIFICATION

N-LEVEL IMPLEMENTATION
SPECIFICATION SPECIFICATION

ASSERTED HOL
CODE

INTERACTIVE THEOREM PROVER (ITP)

* AIDS THE USER IN FINDING AND DOCUMENTING PROOFS

OF LONG THEOREMS

* USES THE PRINCIPLE OF REDUCTIO AD ASSURDUM

.- j 6

|-.

OBJECTIVES OF THE ITP

" ALL PROOFS MUST BE AUTOMATICALLY CHECKED FOR
SOUNDNESS.

" THE USER MUST BE IN COMPLETE CONTROL.

" THE OUTPUT MUST BE IN A FORMAT THAT CAN BE
AUDITED.

" THE USER MUST BE SAVED FROM VOLUMINOUS TYPING
OF PROOFS,

ITP

" CHECKS ALL PROOF STEPS FOR LOGICAL SOUNDNESS

" WRITES PROOFS IN HUMAN-READABLE FORM

- PROOFS ORGANIZED IN NESTED FASHION

- LINE NUMBERS INDICATE STEP SEQUENCE AND
NESTING LEVEL

- ENGLISH JUSTIFICATION AUTOMATICALLY
APPENDED TO EACH PROOF STEP

• PERFORMS MOST DEDUCTIVE STEPS AUTOMATICALLY,
BUT NEVER ENTERS INTO LENGTHY EXCURSIONS TO
HEURISTICALLY DISCOVER DEDUCTIONS

* ACCOMPLISHES AUTOMATIC DEDUCTIONS BY GENERATING
COROLLARIES TO PROOF STEPS AS THEY ARE PRODUCED, E.G..

- SIMPLICATION

- INSTANTIATION
- ANO SPLITTING

EXAMPLE

USER STATES THEOREM AT STEP 100

100 H I &H 2 &H 3 ->C l & C 2

ITP ASSUMES THE CONTRARY

100.1 HI&H 2 &H 3 &(-C 1 I -C 2)

ITP AUTOMATICALLY AND SPLITS

100.1-1 H1

100.1-2 H2

100.1-3 H3

100.1-4 -C 1 j -C 2

L-17

ANNOTATION EXAMPLES

ASSUME

(15.1) 'AND SPLIT'

(40.8 40.10) SUBSTITUTION (40.18U

(36.11-3 362-2) CONTRADICTION

(23.12.3) 'O.E.D.'

VERIFICATION CONDITION GENERATOR
(VCGI

ACCEPTS AS INPUT

- HOL CODE

- ENTRY AND EXIT ASSERTIONS FROM INA JO

- ADDITIONAL ASSERTIONS IMBEDDED IN HOL CODE

* GENERATES VERIFICATION CONDITIONS THAT ASSERT
THAT EACH SUBROUTINE SATISFIES ITS EXIT ASSERTION
ASSUMING ENTRY ASSERTION HOLDS AT POINT OF
INVOCATION

* VERIFICATION CONDITIONS THEN PROVED TO BE
THEOREMS USING ITP

APPLICATIONS OF FDM

" OPERATING SYSTEM KERNEL FOR KVM/370

" KERNELS FOR A SECURE NETWORK SYSTEM

" CAPABILITY BASED SECURE TRANSACTION PROCESSING
SYSTEM

" JOB STREAM SEPARATOR FOR AUTOMATING THE
PERIODS PROCESSING FOR A LARGE SCIENTIFIC
PROCESSOR

* SECURE NETWORK FRONT-END

; L-1 8

FUTURE DIRECTIONS

" BETTER USER INTERFACE

- CRT WITH EXTENDED SEARCH CAPABILITY

- PROOF TREES

" DIRECT PROOF OPTION

" AUTOMATING STEPS THAT ARE ALWAYS PERFORMED

BY THE USER OF ITP

PRINCIPAL DESIGNERS

JOHN SCHEID

VAL SCHORRE

L-19

BIUILD'I NG

VERIFIED' SYSTEMSr

DONALD 1. GOOD

UNIVERSITY OF TEXAS

G YPFSY

WHAT DOES IT DO?

HOW DOES IT WORK?

WHAT HAS BEEN DONE?

WHAT IS THE CURRENT STATUS?

M-1

WHAT DOES GYPSY DO?

PURPOSE

THE PURPOSE OF GYPSY IS THE DEVELOPMENT

OF VERY HIGHLY RELIABLE SOFTWARE SYSTEMS.

APPROACH

GYPSY IS A WELL-INTEGRATED SYSTEM OF

METHODS. LANGUAGES, AND TOOLS FOR SPECIFYING,

IMPLEMENTING, AND VERIFYING OPERATIONAL

SOFTWARE SYSTEMS.

HOW DOES GYPSY WORK?

LANGLAGE

THE GYPSY LANGUAGE DESCRIBES ROUTINES

THAT OPERATE ON OBJECTS. THE DESCRIPTION

INCLUDES BOTH IMPLEMENTATION AND

SPECIFICATION.

VERIFICATION ENVIRONMENT

THE VERIFICATION ENVIRONMENT IMPLEMENTS

THE TOOLS NEEDED TO CONSTRUCT AND EXECUTE A

SET OF VERIFIED GYPSY ROUTINES. THE

ENVIRONMENT AMPLIFIES HUMAN CAPABILITY AND

REDUCES PROBABILITY OF HUMAN ERROR.

M-2

RELIABILITY FROM VERIFIABILITY

ARBITRATIONO +-I +
I MODEL
I OF EXPECTATION I

+- - - ----------------------------
+

R SPEC VERIFICATION

L -------------------------------

E +

1I I FORMAL SPECIFICATION I

I

L CODE VERIFICATION

------------- ----- -------- +

I HIGH LEVEL LANGUAGE I
I IMPLEMENTATION

LALNUAGE TRANSLAT ION

---------------------------+

EXECUTABLE CODE I

I -------- ------------------------

GYPSY METHODOLOGY STRUCTURE

4---+
I USER SELECTED I

I SYSTEM DEVELOPMENT STRATEGY I

--+

---- --+
I I

TOOLS I VERIFICATION ENVIRONMENT I

------------ +-----------------------+---------------------+
I I I I

LANGUAGESI GYPSY ITHEOREM PROVER I GYPSY I

I I INTERACTIONS II

- .--------- ---.. -------------------------------
I I CONVENTIONAL II

I ASSERTIONS, I TESTING, I WELL- I

METIIODS I STAIE I RUN-TIME I STRUCTURED I

I MACHINES, I VALIDATION, I PROGRAMS I
I ALGEBRAIC IDEDUCTIVE PROOF1 I

S --
SPECIFICATION VERIFICATION IMPLEMENTATION

M-3

At II II I IS f F,0M 1 I S

Al. I]R IlAtIION

i MODEL
i GYPSY FORNAL IEL

PROof-

+ -- - - - -- -
[ESIGN HIGHEST I GYPSY F ORMAL Sf EC

1 4 -

I LEVEL TEST ITsV POO

ROUTINE IGYPSY lIIL'LM.NTATIONI

GYPSY
*B SIEIJC TUFPI]NG

*-- I
Se4-- ---- +

i OW GYPSY rORMAL SlL| C I

A LEVEL TEST 1TV PfOO

CODING I ROUTINE I GYr'SY IMPLEMENTATIONI

GYPSY COMPILATION

I LXLUIAALC CODE i
I IIDI Iii

GYPSY LOGICAL STRUCTURE

PROGRAM DESCRIPTION LANGUAGE

M-4

GYPSY TEXTUAL STRUCTURE

SCOPE DEMO=
BEGIN

PROCEDURE P(VAR X: IN-BUFF)

FUNCTION F(N: INTEGER): INTEGER ..

TYPE HISTORY = SEQUENCE OF PACKET;

CONST HI =256;[

LEMMA MAKE-.SECURE (A* 8: HISTORY)=

NAME {CUNITI U FROM {CSCOPE} S;

END;

ROUTINES

PREDEFINED: FUNCTIONS FOR PREDEFINED
TYPES

ASSIGNMENT

IFY CASEP LOOP, LEAVE. SIGNAL

NOVE. REMOVE

SEND, RECEIVE, GIVE

COBEGINP AWJAIT

USER DEFINED: FUNCTIONS. PRUCEDURES

LOGICAL STRUCTURE OF ALL ROUTINES

------------- +-------------------------
I IINTERFACE SPEC I

WHAT? I EXTERNAL III
I I FUNCTIONAL SPEC I

------------- +-------------------------
I I LOCAL VARIABLES I
i +----------------------4

HOW? I INTERNAL I OPERATIONS I
I I ANDI
I I SPECSI

+------------+-------------------------4

TEXTUAL STRUCTURE OF PROCEDURES

PROCEDURE DOWNORADER (VAR H: IN-8UF; ... INTERFACE

BEGIN

BLOCK AUTHORIZED-DOWNGRADING (.)FUNCTIONAL JSPEC
VAR MESSAGE: TEXT;]LOCAL
LOOP

r OPERAT IONS
SPEC ASSERT OUTTO (L,MYID)

L=AUTHORIZED-SEO (INFROM (HPMYID)); AND

RECEIVE MESSAGE ... ; SPECS

END;

END;

M-6

TEXTUAL STRUCTURE OF FUNCTIONS

FUNCTION F (N: INTEGER): INTEGER = INTERFACE

JSPEC
B5EGIN

ENTRY N'0; jFUNCTIONAL

EXIT RESULT = FACTORIAL (N);

VAR 1! INTEGER :=1; LOCAL VARS

RESULTt= 1;OPERATIONS

LOOP IANDi
END; SPECS

EN

SPECIFICATION FUNCTIONS

FUNCTION FACTORIAL (X: INTEGER): INTEGER

BEGIN

ENTRY X GE 0;

EXIT (ASSUME RESULT=

IF X = 0 THEN 1

ELSE X * FACTORIAL(X -1) Fl);

END;

M- 7

STATE TRANSITION SPECIFICATIONS

PROCEDURE SYSTEM (VAR S: SYSOBJECTS) =

BEGIN
EXIT ALLOWEDTRANSITION (S', S);

PEND'ING;

END;

FUNC] I(JN ALLOWEEIRANSITION (P, 0: SYS-OBJECTS)
N BOOLEAN =

EXIT (ASSUME RESULT
IFF IF INSTATEI (P) THEN AFTERI (PO)

ELSE IF INSTATE_2 (P) THEN AFTER_2 (P. 0)

ELE;L FALSE FI. FI);
END ;

LEMMA SECURITYPRESERVED (P, 0: SYS-OBJECTS) =

IS-SECURE (P)
AND ALLOWED-TRANSITION (P, 0)

IS-SECURE (Q);

FUNCTION 1S._ 3L URE (P SYSOBJECTS) BOOLEAN =

PROVING ROUTINES

A ROUTINE TOGETHER WITH ITS
SPECIFICATIONS IS A 'PROGRAM* THEOREM.

TRANSFORM

PROGRAM I GYPSY I ORDINARY
THEOREM -- >I SEMANTICS I--> THEOREMS

PT ------------- VCI,. .. ,VCn

EXTERNAL SPECS
OF CALLED ROUTINES

SUCH THAT

VCI AND ... VCn -- > PT

THENY GIVEN LEMMAS LIP...Lm AS A BASIS,

PROVE

Li AND ... Lm --. VCk FOR EACH k.

M-8

m. i.ow &

PROVING LEMMAS

A GYPSY LEMMA IS AN ORD'INAR~Y THEOREM
OF PREDICATE CALCULUS.

EXAMPLE:
LEMMA AUTHORIZELL-SUBSEQ (P. 0: HISTORY)=

P' SUB 0 ->
AUTHORIZED-SEO (P) SUE, AIUHMORIZED-SEO (a);

PROVE A LEMMA L FROM OTHER LEMMAS L,..L

Li AND ... Lk -> L

DATA OBJECTS

GLOBAL CONSTANTS: CONST N = 4

FORMAL PARAMETERS: (VAR H: IN-BUFF; N:INTEGER)

LOCAL VARIABLES: VAR M: MESSAGE
CONST P =7

IM-9

TYPES OF OBJECTS

PREDEFINED: INTEGER
BOOLEAN
CHARACTER (ASCII)

RATIONAL

ARRAY
RECORD

SET
SEQUENCE
MAPF I NG

BU- FLNH

AC r) .PA IONID

USER [EFINED: COMPOSITIONS OF PREDEFINELI TYPES,

ABSIRACI 1 YF11, VIA ENCAPSLA_ ILMON

FROVING ABSTRACT TYFES

ALGEBRAIC TYPE AXIOMS ARE EXPRESSED' AND PROVET. AS

LEMMAS.

EXAMPLE: TYFE STACK , PUSH, POP,...
BEGIN

S: RECORD (A: A'RAYObJ; P: INTEGER);
HOLD' S.P .0 0; {LUNCRFTE INVARIANT)

END;

LEMMA FOF'-rUSH (93: STACK, X: OF4JLCT)
POP (PUSH (X, S)) = S;

THE CONCRETE INVARIANT IS FROEEII FROM THF EXIFkNAL

SPECS OF EACH ROUTINE F'IJSH, P0F' ,... THAI 14AS I ONtKETI

ACCESS TO THE TYPE.

(CONCREIE EXIT 01 OUlT INL)
-" ((ONCRI IL INVARIANI Of IY'L

M-lO

STRUCTURING

'SUMMARIZING: AS A SLOW WITTED HUMAN BEING I

HAVE A VERY SMALL HEAD AND I HAD BETTER LEARN

TO LIVE WITH IT AND TO RESPECT MY LIMITATIONS

AND GIVE THEM FULL CREDIT, RATHER THAN TRY TO

IGNORE THEM, FOR THE LATTER VAIN EFFORT WILL

BE PUNISHED BY FAILURE.0

IE.W. DIJKSTRA,
NOTES ON STRUCTURED
PROGRAMMING, 1972v

P3)

GYPSY STRUCTURING

IMPLEMENTATION: ROUTINE A
CALLS

/
ROUTINE B ROUTINE C

SPECIFICATION: FUNCTION F
REFERS TO

FUNCTION G FUNCTION H

OBJECTS: TYPE T
DEFINED FROM

TYPE U TYPE V

PROOF:
LEMMA L PROOF OF LEMMA L

REFERS TO ASSUMES
/ \/

FUNCTION FL FUNCTION GL LEMMA M LUMMA N

M-L1

PROOF INDEPENDENCE

+--------------

PROGRAM I GYPSY I ORDINARY
THEOREM --.'I SEMANTICS I--:> THEOREMS

PT --------------+ VC1,...VCn

EXTERNAL SPECS OF

CALLED ROUTINES

THE PROOF OF PT ASSUMES ONLY THAT CALLED

ROUTINES CAN BE IMPLEMENTED TO MEET THEIR

STATED EXTERNAL SPECS. THE PROOF IS

INDEPENDENT OF ANY FARTICULAR IMPLEMENTATION.

THIS ALLOWS PROOF OF INDIVIDUAL ROUTINES

TO BE DONE IN PARALLEL WITH ANY DESIRABLE

ORDER OF DEVELOPMFNT.

PROBLEM DOMAIN THEORIES

VERIFICATION CONDITION -> PROGRAM THEOREM

LEMMA A -> VERIFICATION CONDITION

LEMMA B -> LEMMA A

REUSABLE

THEORY

PROPERTIES OF PREDEFINED
GYPSY FUNCTIONS LEMMA Z

M-12

VERIFICATION ENVIRONMENT

- - ----------
I I DATA I

--- I EXEC I ---- I I
I I BASE 1

S4- +-----------

I TOOL I . . . I TOOL I
---------- + +----------

TOOLS AVALIABLE:

GYPSY SYNTAX AND SEMANTIC ANALYZER.

SYNTAX DIRECTED EDITOR. VERIFICATION

CONDITION GENERATOR. INTERACTIVE THEOREM
PROVER. INTERPRETER. COMPILER. DATA BASE
DISPLAY, PROGRAM DEVELOPMENT MANAGER

UNDER DEVELOPMENT:

GYPSY TO BLISS TRANSLATOR. SPECIFICATION-
DRIVEN HIGH-LEVEL OPTIMIZER, CONVERSION

TO INTERLISPv EXPANSION OF DATA BASE
CAPACITY

TRIAL

APPLICATIONS

M-13

(WELLSv 763 NETWORK COMMUNICATION SYSTEM

LAYER 1. 4-NODE MESSAGE SWITCHING NETWORK

2. 4-NODE PACKETIZER/ASSEMBLER NETWORK

3. 5-NODE PACKET SWITCHING NETWORK

SPECIFICATION:. 1500 LINES

IMPLEMENTATION** 1000 LINES

CONCURRENT PROCESSES: 16

VERIFICATION:. MANUAL PROOFS OF CONCURRENCY

EXECUTABLE:. NO

EFF'ORT: 1-2 WORK YEARS

(HORN. 77) SECURE INTERNETWORK

AN N-NODaE NETWORK OF ACTUAL HOSTS WITH
SENSITIVE INFORMATION COMMUNICATING VIA END-
TO-ENLI ENCRYPTION OVER AN UNSECURED
INTERJ4L1WORK THAT INCLUDIES THE ARPANET.

SPECIFICATIONS: 372 LINES

IMPLEMENIArION: 10 LINES

CONCURRENT FPROCESSES: UNSP'ECIFIED' N 7-0

VERIFICATIONS: MANUALv
3'j MAJUR DEDUCTIVE STEPS,
20 -40 PAIGES

EXECIJ f Ail -L: MUILL OF ACTUAL. NETWORKS

EFF~i .-- WOkK YEAR

M-i14

4..-

EMORICONIv 773 N X N MESSAGE SWITCHER

N CONCURRENT SWITCHER PROCESSES ROUTING
MESSAGES AMONG N USERS.

SPECIFICATIONS:. 90 LINES

IMPLEMENTATION:. 50 LINES

CONCURRENT PROCESSES:. UNSPECIFIED N :-0

VERIFICATION: FULLY MECHANICAL AND
INCREMENTAL, 60 PAGES OF TRANSCRIPT.

EXECUTABLE: NO

EFFORT:. 3-6 WORK MONTHS

CHAYNES AND NYEERG, 78] DISCRETE ADDRESS BEACON SYSTEM

SELECTED COLLISION AVOIDANCE ROUTINES FROM AN AIR
TRAFFIC CONTROL SYSTEM.

S3PECII-ICATIONS: 844 LINES (105 SPEC FUNCTIONS)

JilfI IFMEN1ATION: 529 LINES (19 ROUTINES)

VERII-ICATION: MECHANICALLY PROVED 30-40 OF 50 VCS.

EXEIAUIADLE: MODEL OF RUNNING FORTRAN IV PROGRAM

EFFI-11 1-2 WORK~ YLAkS BY TEXAS INSTRUMEN7S

M-1 5

WIN,
ESMITH AND GOOD, 793 SIMPLE DISTRIBUTED GUARD

INTERACTIVELY MONITORS MESSAGE TRAFFIC BETWEEN
A HIGH SECURITY SYSTEM AND A LOW SYSTEM.
TERMINAL DRIVERS ARE PROVIDED TO SIMULATE HIGH
AND LOW SYSTEMS.

SPECIFICATIONS: 252 LINES

IMPLEMENTATION: 241 LINES

CONCURRENT PROCESSES: 15

VERIFICATION: MECHANICAL
32 PAGES OF FINAL PROOF
TRANSCRIPT

EXECUTABLE: ON PDP 11/03s

EFFORT: 2 WORK MONTHS

CURREN] STATUS

SPECIFICATION
IMPLEMENTATION STABLE SINCE
VERIFICATION JAN 1979
METHODS

GYPSY STABLEL SINCE
LANGUAGES SEPT 1978

VERIFICATION IN EXPERIMENTAL USE.
ENVIRONMENT DEVELOPMENT AN' MAINTENANCE

IN PROGRESS.

DEVELOPMENT OF
VERIFIED SYSTEM IN PROGRESS
EXAMFLE S

M-16

ACKNOWILEDGMENTS

M- 17

'1

HDM

(Hierarchical Development Methodology)

An Approach to Designing Secure Systems and Proving
Them Correct

Karl Levitt

Computer Science Laboratory
SRI International

Menlo Park, CA

OUTLINE

- An Overview of HDM

- Writing "Good" Specifications in Special

- An Example of the Application of HDM -- PSOS (a "provably"
secure operating system)

- Formal Requirements for Secure Systems -- and how to prove

them

- HDM Tools

- Assessment of HDM

- Outstanding Problems

N-I

CRED ITS

freatf.n of HDM and S?.cIai

L.,ry Robinson (David Parnas)

HDM "Checking"tol 2

lo-.u,nSecond CeneritionviHDM~lit
Br d Si lverberg ,DavI d Ciit Joe Gogoen

F-rnllot ion of HDM q "bset -- snd Theoremn Proving

Deosign of 'SOS4

P e ter Neunan, Larry Robinson. Rich Peiertag4

Mult f-ol" Sec orI (MIS) Requirem~ent

-od Proof To',l
Rick Fetertag

frogram Ve'orfffcat-,, Tools

D. I gft Hare, Marb Morkoki, fover. Moore

Specification of Consurrency
Len Lampo 't.,I hca r d S chwartz. P. B. Melliar-Snith

I No- at Ford Aeropace

2 Bow at Bo eyve la

INov.a Summsit SYsmntt

4 N- a Svtek

HEIM is ari integrated Collection Of

*Languages

*Tools

aConcepts

*Guidelines

Tro Aid In Developing and Verifying Large Real-World Software Systems.

Developed At SRI Prosm 1973 - Present

[)fistfnguish Ing Characteristitcs of 11DM

" oriented Towards Real-World Solutions to Real-World Problems

" Has a Fiormal Basis

* s comprehensive

* va Research Vehicle

SSupports Veriicaltion

- of design

- of code

N-2

HTIM Handles many of the "dirty" aspects of real-world systems, including

* Resource Limitations

* Resource Sharing

* Side-Effects

* Aliasing

Does not yet handle full concurrency

HDM is for use by the general community,
not just a sophisticated elite.

Still, learning HIDM is a non-trivial task

A rigorous approach to software development

is intrinsically difficult

Applications of HDM

*PSOS --

- designed by SRI

- irplementation underway at Ford Aerospace

*KSOS (at Ford and Honeywell) --

A Unlx-Compatible 0. S. supporting a multi-level

security policy

A software implementation fault-
tolerant avionics computer. Production
and verification of sift is underway at SRI

N-3

J 41 --. ,

HDM Structures at System Design

Vertical Structure

(Hitiarchv ;' Abstract Machines --Dijkstea)
each level provides a set of facilities
to the next higher level. The facilities
at one level depend for implementation
only on the facilities provided by the next
lower level

The facilities provided by the top level
are those available to the user

Horizontal St ructwre
(provided by Modules)

Each module encapsulates closely related
concepts, loosely coupled to other modules
in the level

There are many examples of the abstract machine concept, e.g.:

- Families of Instruction Set Processors,
e.g., IBM System/370

- Hierarchies of Communications Protocols

- Operating Systems (e.g., T.H.E., PSOS)

But,

The key is to formalize the concept

N-4

Some "key" levels in

an operating sysrts hierarchy

MS, "1sterprocess D IC M

M14 'Piles" V D M

Mi "V irtual Memory" M

M2 "Pages"PA Im M

MI "P'Ivsical Storage" M S AP P

%'M VirLWol Memory PA Pages

FI) Pile Directories PM Page Mapping

It Interprocess Comnic,tions 'I Main Memry

MP' Molt ipi Pro,--se SD Secondary Storage

iMMAP Memory Mapping

N- 5

Figure 2: PSOS GENERIC DESIGN HIERARCHY

:LEVEL! PSOS ABSTRACTION PSOS LEVEL

F 1 USER ABSTRACTIONS 14-16

E 1 COMMUNITY ABSTRACTIONS 10-13
D 1 ABSTRACT OBJECT MANAGER 9
C I VIRTUAL RESOURCES 6-8
B PHYSICAL RESOURCES 1-5

A 1 CAPABILITIES 0

Figure 1: PSOS DESIGN HIERARCHY

LEVEL: PSOS ABSTRACTION OR FUNCTION

16 USER REQUEST INTERPRETER 0
15 USER ENVIRONMENTS AND NAME SPACES
14 USER INPUT-OUTPUT *
13 PROCEDURE RECORDS *

1 12 1 USER PROCESSES * AND VISIBLE INPUT-OUTPUT •
11 CREATION AND DELETION OF USER OBJECTS '

10 1 DIRECTORIES (0)[C11]
9 EXTENDED TYPES (§)[C11]

8 SEGMENTATION AND WINDOWS (#)[Cll
7 PAGING (8]
6 SYSTEM PROCESSES AND INPUT-OUTPUT (121
5 ; PRIMITIVE INPUT/OUTPUT [6)
1 4 1ARITHMETIC AND OTHER BASIC OPERATIONS

3 CLOCKS [6]
2 INTERRUPTS [61
1 1 REGISTERS (0) AND ADDRESSABLE MEMORY [7)
0 CAPABILITIES *

--- MODULE FUNCTIONS VISIBLE AT USER INTERFACE. -
() MODULE PARTIALLY VISIBLE AT USER INTERFACE. 1

[I] MODULE HIDDEN BY LEVEL I.

[C1l] = CREATION/DELETION ONLY HIDDEN BY LEVEL 11.:

N-6

!C~ik 1 , f11, Li t 11 deVelII PMn i prones - init stages nLA

di-.el.,pnmnt and verIt i-it lon.

M, "k.t. SeLt i n

Mod'. It hpvC f i, at I on

Repr ist at ion

* In 'emet at tea t

- e iri li t i 'n be at teinpte l as svstem dlv.Iop

- ile, isinins i ir r el-2nfdted as t hev are made

- tp, in;-rtan t I sai in r mad.- -rv and, hin, v t

t ear lv re vi ew (a snstem ts-iall g. s ht in d.sicn

'thii rh ood: Recg line tltit backt racking and ''crvstal -bal inmz inc

are' necessary. line "stage. of iDM" are &uidelines. nt hard-and- List

An abstract machine (or modale) in HDM consists of:

1. A set of Internal Data Structures

that defines its state

2. A set of operations that can access and modify

the state

Op

Si S f

N-7

Realizing an abstract machine in terms of another

1. Data structure representation --

each upper-level state maps to a set

of lower-level states, and distinct
upper states must map to disjoint

sets of lower states, i.e.,

SI * S2.= R(Sl)/ R(S2.) 9

2. Operation Implementation --

Let operation OPu take state Sl to S2u,
u u

Op
SI 1 .---- ' $2

u u

An implementation of O1' is correct it,
when started from any svate in R(Sl).

it terminates in some state in u

R(S2 (The well-known commutativitv
diaram illustrates this)

*48 K u wo M

N-8

S PEC I AL:

Special is HDM's module specification language.
A module specification specifies:

I. State-functions: functions that characterize
the module's data structures, i.e., that
determine its state.

The specification of a state-function
provides its signature and constraints
on its initial value.

2. Operations: The specification of an operation
describes a state change and a returned value.

A state change is deycribed by a predicate
that nonprocedurally relates the post-invocation
values of the state-functions to their pre-
invocation values.

The returned value is described in terms of
constraints it must satisfy.

and non-deterministically

SYSTEM DESIGN WITH RDN & SPECIAL:

When given a problem statement, the first step is to
formulate a model of a solution.

(;enerally, the more abstract the model at this point, the better.
The process of hierarchical decomposition involves the formulating
of successively more concrete models to implement the more
abstract vnes.

EXMHII.E:

Consider the problem ot keeping word counts. The user Is to he
provided with the ability to:

I. Querv the count for a given word.

2. Insert a word. It previously inserted, its count is
incremented by one; if not, its count is set to one.

I. Delete a word occurrence.

N-9

ee ai t'rrttrlve models are:

a) An Infinite napping iron words to Integers,.

with tt.' maping initIally everywhere undefined.

This can b. pitured by an infinite (imordered) table:

-- '1 ?i ' -1 15 1 a.

v -" bar foo

[le only defined words are "b", "'", "bar". A iroo"
it'I, _utt 1, 1", IS, 1.

hi An -insrted tinite lint i wotrd, c- t p1ar
t ind words

, <h,,. 1! b~. I>. <t, .. <. ,. 1 2

l int,'Rr-lndned arrayl. t - do.t ined words in -orted
,,, t he ,lth- fo - o~tf

We'll choose alternative (a), the infinite mapping,
since it is the most abstract.

In Special, it is specified:

VFUN word store (word w) --) INTEGER count:

H Ii)DDN;
INITIALLY

FORALI. word wi : word store (wl) [INI)EFINI'fD.

The query operation reads ot f word store.

trapping references to undefined words.

OVFlTN Get count (word w) --) INTEGFR I;

EXCEPT IONS

undef: word store(w) = UNDEFINI);

DER I VAT1 ON
word store (w),

N- 1)

..._tm

The operation Insert-word changes the state and returns as
value the new count.

OVFUN Insert word (word w) --> INTEGER cnt;

EXCEPTIONS
full: RESOURCEERROR;

EFFECTS

IF word store(w) = UNDEFINED

THEN 'word store(w) = 1

ELSE 'word store(w) = wordstore(w) + 1;

cat = 'word store(w);

IMPORTANT NOTE:

The EFFECTS section specifies art unordered conjunction

of effects, and "=" denotes mathematical equality, not
assignment.

The operation Delete word deletes a word occurrence and returns

the new count.

OVFUN Delete-word (word w) --> INTEGER cnt;

EXCEPTIONS
undef: wordstore(w) = UNDEFINED;

EFFECTS

IF wordstore(w)"= 0 THEN
'word store(w) = word store(w) - 1

ELSE 'wordstore(w) = 0;

'word store(w) = cnt;

N-il

.. . S C 19- iii a

ww -0.9 -1 Lm;'

Vsm"UL t.-ea0- .

.. .);

ws n~.S L mo a-);

mm

.. s...Q ta.4

MOUL pages daa)

.PMpaevli(alnl o k, lo NTGE dta

data -759 0;

Ia. . r b r I I T E E R .1 i =

INITIALLY
daa 0

SPN in~,.ot.pseN)-12a..in~ 9

MtE Dao-jood(st.Rmbor k, too) -> IW~M asta;
IICzTION3

00o00: IF k (aabr-or-MOO()
TWO La). pego-Am,

D.CIVATION
pag*evl(C.lot

VFUM pago-wit.(eat-bumb. k. Igo; IN3URN dsa);

nojag ; MO(mabr-ef...gsO > W);
a.I:IF k < mmbr..o ja.(t

>11lt . aSOS""L.~

EFFECTS
'patol(k. 100) - data;

c~ug ne.PAS.O);
SITIMS

nt0..00-.00a8: nvabr..ot...oa() - 0-a..;
EFFECTS

'Gefaiot-POgSa(a omber Of of.g*a. # 1

OFtH r~s.zo.1at~qse) 00L.nvmb~ usv~ja~th);
gict?'IOitl

oo-last-eerur.Lpge)*0

Iaim..last-pao() - o-ngh
FORALL flat...0.U00 a0

1131? (nenjelth I

'pao-&a(ftcbsr..etfjag.$0, a) 0;

BICPTIONS
-- jast-me.: num0trarf...A.) *0

EFFECTS
'nuwsr-o-.paoa* aumbrof.atejgsa(- ;

'aim-lat-aegeo) * o4g"Ise;
thOU.L nat...a.bt, a: -pmgaan(saI(.er~.of-.psges, n) 0;

two.JaULE

MAP segment T0 page.;

MRPS

natjtumber: I INTEGER n 1 a >- 0 1;

INERNALRFS

FROM Segment:
INTEGER maz...ize;
VUN aeL-val(natnuiber nt) -> INTeGEN data;

FROMI pages:
INTEGER .azj.agea, pageatiz*;
YFUN pago..uI(nat-ntmber k, 10c) -> INTEGER1 data;
VUN numbero...pagea(0- nat~nuaber n;
T7GM aizelaat..page() ->natjttmber nt;

MAPPINGS

aa ize* saxpages a * *_is

se&val (na mber loc):
IF boo

<- pmeasize 6(number..ot.pagto() + 1)* iaek~laat.pg(
THEN page-val(INTPART(loo / pageasize),

rRACTPARtT(loo / paga~aize))
EIE ?;

9UDj4AP

N-1 3

A REQUIREMIENT STATEMENT FOR A SYSTEM

(Not Adequately Expressible in Special)

An abstract statement of what the system does. Generally, a

requirement expresses a subset of the information contained in

the specification and requires

" Expression of "information flow"

* Expression of the effect of sequences of operations

" Second order logic

The top-level specification of a system can

TH principle -- be verified with respect to its requirement

REQUIIRmEET STATEMENT FOR MULTI-LEVEL SECURITY

T.evel = <classification, Category-set>

Classification is an element of a totally ordered set

For two levels

LI - (CLI, CAT 1>

L2 - (CL2, CAT 2>

LI L2

CLI ZCL2

and

CAT I CAT 2

Clasficat lons:

tnclassified, confidential, Secret, Tcip Secret

Cat egoriles

Atoetl, Nato

N-14

Information can flow from L2 to LI

If and only if LI L2

This model is flawed since:

- All Information will eventually reach the highest
security level

- Information at a high security level can be
"destroyed" by low security level information

Nevertheless

This model is widely used as the basis for secure systems, e.g., KillS

11L , T,C IL)

('t 1) f (~h. I

14,A1 >

(o' t%)

V.-~ i RAI

N-i15

Proving that a top-level special specification is multi-level secure

is conceptually very easy

* Write the specifications such that a security level

is associated with each data structure (V. function).

* Show that according to the specs, the new value of a data

structure at Level L is dependent only on the old

values of data structures at Li, Li S L.

The identification of dependencies is complicated by the "syntactic

sugar" and "real-world" features of special -- but very doable.

"ODULE virtusl msory

PARAMETERS

INTEGER sa ee no, me _*9I ndx:j

ZXSINALRZPS
FRON security.

security level: GSIGUATOR:

BOOLZAN Tt q11eeuritylovel 11, 12)s

FUNCTIONS

VU contents(INTKEGR segno, Indell securitylevel 81)
-> INTGER cl

N'DDIO:IKITIALLY

. . ?I

VYNp roedfINTUGER seino. indos, securitylovel el)
(security level p11
-) INTlGEW al

EXCEPTIONS

*e0So (0 D segno) Sol seg o:
contentseoleo0 Index, iT, ?,

DERIVATION
contnts(seeno Inde*, 81);

OFUS writeIlINTGR segno, index, c, securitylevel &I)
oeecurity-lovel p1|;

zXCt PTlow S

eagno < 5 0 sOegno ma xs seg no:
index <0 01 index eoeeeq g |ndea
- ltoq(p, eI)
'esnConts(aegno, index. s1) - c;
FORALL INiEGER I I I)- 0 AND I < Inde

A)D eontenta(segno, I, elI) * :
reontentsIeegno, i. 61) o f:

tND_ODULt

N-16

ee; --

HDM Tools:

1. Specifications checkers (completed)

2. Multilevel security verifier (completed)

3. Modula verification system (completed)

4. Pascal verification system (in progress)

All in Interlisp and available for public use.

I. Spec checkers

* Usual parsers, type checkers, and pretty-printers for Special,

HSl. & ILPL.

* Various external consistency criteria also checked.

* Limited In scope, but heavily used.

* Support small amount of version control.

2. Multilevel security verifier

Basic multilevel security property: whenever information flows from

one entity to another, the security level of the recipient Is at least

as high as the sender.

N-17

-1 1til -e- S---r mity -Verifer

1ri- h-1r ~ -- d nov at

Bover,1 -Moor t

De velop ftor verifcate in of codeoinrFl tAeere-c '

KO im lmna i .eecOtr ho d-nvrt

npes re c w t t en hn peve varan Fti

tU(o clan ed-uptomatdIr e version

eveopfo eifAtion oe Moel codein or
erpee ion in .- t o C r syntax

ias s dictl on thclera-form ik foralzaio mofe
.kie ltineried ormalse t svsety).

USSI is a eclreaped-p, t fovrmally-defined versio

epresi ons Inn B-N theory. Concrett syntax

ish Lis-,ike, i n lternalfo rm lie eg..mr

lllie a lierizei statiot synax). n odAropc'

implementation language supported bv the B-M

formalizati on is the assembly-ike languag.

(IF (like[,P r n l

N-18,

Deals i e lw Spec i s d P

VSL, sGSL

(not USS & CIF)

OF cod

4. Pasca o Verification System

Currently under development for proof of SIFT.
Deals directly with Special specs and Pascal code
(not USSL & CIF).

A novel component is the meta-verification condition

generator (meta VCG).

The meta VCG processes formal semantic descriptions
along the lines of the way meta-parsers (i.e., parser
generators) process formal syntax descriptions.

N-19

L-_ .

5aR.fin. L *Zia Pa&Lfe

51ecmni4wdIL
~~pfAI3 ~ a (7~m .. #~~

6RUM 1.. 5,.-

Sr

N-20

EXPERIENCE WITH SPECIAL:

While well-conceived, Special has flaws

* The concrete syntax is too often awkward and unpredictable

(the syntax-checker gets used a lot!)

The provided language structures CO-, V-, and OV-functions)

do not correspond directly with the structures of the
underlying model (state-fn's & op's).
A great source of confusion.

* Some constructs contain "dark corners" with semantics not

easily deducible from principles.

* Other constructs nit as general as they could (or should) bk.

* Tile type system should be integrated better, with more modern

abstract data type facility.

NEVERTHELESS ---

" Special has been (and is being) used extensively

and productively in the design of numerous
systems.

* While module specification in Special is harder

than it should be, it's not hard to learn
one's way "around" the problems. Effort is

well worth it.

" The "formalized subset" is extremely clean and

does not suffer from these flaws.

WORK IS IN PROGRESS TO DEVELOP A SUCCESSOR TO SPECIAL.

N-21

AN ASSEKSSME:NT OF HDM:

111)9 has be en mioist successful is, a dies4ntoI

'lost users see 11DM as just Special
That is, they uise 11DM prlmar i v for Module tiesign 6.pdfictIo

rhe specs captutre design decisions and se rye is a ret erence tIr
discussinug alternlativyes.

U'sers are t vpi cal Iv interested in ver i fyvintic some propert les it
the design, so appreciate the r igor Specijal provides.

Current HD1) act ivitv is creat ing a "second generat ion" methIodov
taking into, considerat ion uiser experiences itid recent rvsevirch *

part i cularl1y in the area of dat a t vpe spec it icat ion.

Our appraisal has affirmed the appropriateness of the state-machine
approach to specification -- most often, it is easier to ttse ;!an the

algebraic approach, especially when:

- new concepts are being speciftied

(i e. , th ings oftier titan stacks, queuies, et c.)

especial I y i f those ctoncept s are more
1proceqs oriented, as% opposed to data
or iented.

- difficult "real-worlti" features must
he specifivd, including side-effects,
al1 las ing1 ,evtc.

Peo~ple tendl to think in models.

N-2 2

AFFIRM
A Specification and Verification System

Susan L. Gerhart
USC Information Sciences Institute

4676 Admirdlty Way
Marina del Rey. California, USA

2 13-822-151 1

Project Members
0. Baker
R. Bates
R. Erickson
S. Gerhart
R. London
0. Muoser (Now of GE Labs)
D. Taylor
DO Thompson

Otes D. Wile

Ote . Guttag (now MIT) - elgebraic axioms

D. Lankford (now Louisiana) - rewriting rule theory

Support: Defense Advanced Research Projects Agency

HSTORY

Predecessors

XIVUS Gwonoirgceedaoe 1975

OTVS KissrGuttag, Hoerowitz 1976-1978

S imiar Systems

Stanford Luckhem A Oppen - dedco Wocedura

SRI Boyer & Moore - automatic induction

Texas Good & aledsa - integrated feauage
(GYPSY)

IBM Carter. ot of. -airiuletion.mcrcd

Cornell Constable - programiang logics

Edinburgh lner. et Wl. - proof strategies

Successor AFFIRM .POPART (Producer of Pareers and Related
Tools)

Transformation System

Graimner-bawed

Denratim "ketodO

0-1

GOALS

1. Rwutine prmuic-i~ty -ros of

I. Prograrn correctness wrt spocafctso

b Specation properWti

2 Strong alternative & compiement to prorn testng

3. Stimuus to mathemabrt bass for

a Software rewAty

tL programrman retho logy

4. Ultimately. certification Lae in gNy crihcl software

s Nuclar Reactors

b. Avionics Systems

c. Secure Systems

L Electrorac Funds Trwlner

i Operatfi
k. Mitary

d Protocols Ilssage/Data Systems

L EIctroW

w Electroric Fwnds Trarsfor

k estbuted System

AFFIRM's PARADIGM

1. Abstract Data Types

a. Algebraic specification (Guttag)

b. User-defined in programs

2. Inductive Assertion Method for Programs

a. Assertions on Loops, Entry/Exit

b. Turn programs into Verification Conditions

3. Interactive Theorem Prover/Checker

a. User gives strategy and directions

b. System does book-keeping, formula manipulation

0-2

ALGEBRAIC SPECIFICATIONS

1. Abstract Data Types

a. Set

b. Queue

c. BinaryTree

d. Sequence

2. Parts of a Type Ij
a. interfaces of operations, strongly typed

b. axiom defining operations

c. schema for induction on the type

3. Operations are

a. Constructors - Other operations defined over
constructors

b. Extenders (Modifiers)

c. Selectors

d Predicates

tMn Oue..eOIEtanTyge;

declar %. 0. q2, (a QuauafElgmTyP9;
ti. iI . i2. i Eumype;

inteflitm Conistructors NrwQuPw~fEhmTyp. q Add i.
Extenders Rswv.(q), Appw~dqI, q2), quis(i)

QuimueOfEismnType;

inteif ace Selectoxrs Frt(q), Back(q): EwuiType;

interiaces inductixx~q).
Predicate i in (t Boolem

axwom Ariontx for Equality
q q -- TRLX

q Add i- NwQuaus*tEimTyps - F'ALSE.
NewQueuwOfE1&mTyp9 - q Add i- FALSE.
q1 Add il - q2 Add I2 -- ((ql-q2) and 6i1iW);

aisoms Ran e@(NvwQumuamfE1@mTyp*) -- NawQurAuaOE1@flTypv,
Renios'(q Add 0) -x d q - NawQuaue0fEiamTyp@

than q
els Reamove 4) Add i:

axiomI Appenil(% NawQuxujafEimTyp.) -

Append(q q1 Add 1l) -x Awand q1) Add i,;

axiom quefi) -. NowQuuxWEimType Add t

exm ront(q Add 0~ a- if q m NawQij@uOf~imType

slam I'roxt(q);

o-3

AL 4

axiom Back(q Add i) i;

axioms i in NewQueueOfElemType FALSE,
iin (q Add i 1) == 0i in q or (i~i10);

schema lnduction(q)
cases(Prop(NewQueueOfElemType),

all qq, ii (IH(qq) imp Prop(qq Add ii)));
end (QucueOfEleinTypcl

THEOREM PROVER: MECHANICAL

- Rewrite Rule Orientation

" Axioms lhs = rhs become -rules lhs -rhs

" Properties of good rules:
- Finite Termination
- Unique Termination -- Knuth-Bendix algorithm
- Sufficient completeness

- Natural Logic

" Combine with conditional expressions for logic

b and c 4 if b then c else FALSE

b imp c - if b then c else TRUE

if Qi b then c else d) then e else f-
if b then (if c then e else f)

else (i d then e else f)

" Also quantifiers some and forrzll

- Recursive function definitions (an escape mechanism from
otherwise infinite rewrite rules)

0-4

Examples

Notation

define splitat(q,i)== i in q imp
some qlq2 (q=Append(ql Add i, q2));

Recursive Function

define MakeQueue(en)==
if n<=O then NewQueueOfElemType
else MakeQueue(e, n-i) Add e;

THEOREM PROVER: HUMAN
Proof Structure

* Nodes: propositions
* Arcs: names of subgoals

* Movement around tree via cursor
up, down - to retrace steps
retry, resume - current theorem
next - to "natural" successor
named node or arc

Name, annotate, print status and theorems

0-5

EXAMPLE PROOF TREE

"QueueSplit is: not (q = NewQueueOfElemType)
imp Append(que(Front(q)), Remove(q)) *q

proof tree:
4:. QueueSplit

employ Induction(q)

Immediate
6: Add:

2 cases
8: 3 invoke first IH
10: 4 replace qqt
1 0:-> (proven)

Proof Commands

try prop sets up a goal

apply prop use prop cis a lemma

inivoke def invoke a definition

erriploy iduct ioti(v) use a schema

suppose prop divide with prop and vprop

replae use equalities

o-6

USER HABITABILITY

Proving is hard - the system should help, not hinder

User Interface Features

1. Spelling correction

2. User profile

3. Command abort, fix, undo, redo

4. Recursive Execs

System Interfaces

1. Transcript of sessions

2. Output through formatter to variable font device

3. Automatic loading of needed types

4. Easy access to editors

EXAMPLES

Data Types
Queue
Set
Sequence ****

Circle
Binary Tree
Array

Small Examples
Interpolation Search
Root Finding (numerical analysis)

Large Examples
Delta - 1000 line BLISS module for file updating

Fully specified
Partially proved

Communication Protocols
Alternating Bit
3 way handshake (TCP)

Specification
Toy Security Kernel

0-7

'Vi

EXPERIENCE

Easy to learn, knowing literature and logic
Several *external' users (protocols)

Error-prone users

Using commands
Getting lost
Stating theorems and lemmas wrong

Proofs are
Simple, well-structured at end
Messy, long in middle
Crudely planned at start
Easier to find then theorems

Paradigm good
Proving must be interactive

Rewriting rules are effective. natural

Date abstraction methodology
Now widely known
Extendible - transition systems

User interface is critical to productivity

Resource demands are bottle neck -

CURRENT STATE OF AFFIRM

Released for wider use over ArpaNet
December 19 7 9

REFERENCE LIBRARY
Reference Manual
User's guide
Type Library
Annotated Transcripts
Collected Papers

PROTOTYPE FOR EXPERIMENTATION
Variety of users
Variety of applications

CONTINUED EVOLUTION
More theory of rewrite rules
Better interface, display capabilities
Integration with testing
Methodology for errors, exceptions
Support for proof persistence
Larger, stable library

0-8

An Overview of
Software Testing

Mary Jo Reece

MITRE Corporation

WLatus Softwe Teafi?

Why is Sotwaue Teni" Iumportmaat?

Where does Software Tent Fit imto the
Software Life Cycle?

How i Softwe Testig Coaducted?

Smmmar

What is Software Testing?

P-1

Why is Software Testing

bmportant?

Why is Software Testing Important?

Software Effort

Aalysis Coding
& & Test

Design Auditing

SAGE 39% 14% 47%

Geminai 36% 17% 47%

0/S 340 33% 17% 50%

Where does Software Testing
Fit into the Software

Life Cycle?

P-2

Software Development Approaches

REQUIEENTS DESIGN 06 PRODUCT
SPECIFICATIN CGf ~ rFJr SPECIFICATIUN

SPECIFICATION~

ItFQEEMENTS COOF

FORMAL FORMAL
SECURITY SPECIFICATION
MODEL

Where does Software Testing Fit
Into the Software Life Cycle?

SPECIFICATION SPTCIFICATION

B5CS FINAL CS

GOV/ERNMENT CD

AU1)ENflCATION~ QJ

YE871NG

--------- -T4E AUTHENTICATION

Relationship of Development to
Test Activities

SOFTWARE REQ. & PF.SYSTEM TESTS
SPECIFICATION

GENERAL DESAGN INTEGRtAllON TESTS
SPECIFICATO

DETAILED DESIGN MODULE TEST
LSFECUICA11ON

CODE DODED

MODULE

P- 3

How is Software Testing
Conducted?

How is Software Testing
Conducted?

Overall Solts.., Testing Activt

rest ptanning

Test case design~
Test execution1
E~aluation o(test results

How is Software Testing
Conducted?

Test Cane Design

Test plans

Test procedurves
Test reports

How is Software Testing
Conducted?

Software TeslaS App me

Wha ae the,?

Whati do they do?

Ho do the differ from mnodule Ie~ting?

How is Software Testing
Conducted?

Explicit vs.. Implicit TestinS

How is Software Testing
Conducted?

Explicit vs. Implicit TestimS

P- 5

How is Software Testing
Conducted?

Explicit vs. Implici Testing

MICH

How is Software Testing
Conducted?

huplicit TrestiNg

Ex~ercsing softssare w~ithout knowledge of structu~re

Based entirely on externil inpuats

Cannot control software variables

Dafficult to isolate source of any failures

Requires entire software structure

Summary

P-6)

Summary

and location of the degects.

P-7

.4
*. .

UPDATE ON THE
KERNELIZED SECURE OPERATING SYSTEM

(KSOS)

John Nagle

01-5
UPDATE ON KSOS - OVERVIEW

* Project goals and their realization

* Problems along the way

* Insights into trusted computing

FLASH!

SHIPPED TO ALPHA TEST SITE
ON 11 SEP 80!

Q-1 "

-- .3

PROJECT GOALS

KSOS REQUIREMENTS SUMMARY

" Provable security: based on security Ker nel and

trusted processes

* UNIX compatibility

* Efficiency comparable with UNIX

* Administrative support features

* General purpose Kernel

- Multiple machines
- Emulators for other operating systems
- Non-UNIX applications

KSOS SECURITY ASSURANCE

F014MA W-Q-2

UNIX COMPATIBILITY

* Functional compatability - very close to UNIX

" Performance of Alpha release 4x to 8x UNIX

- Costs of security, mostly structural

- Overhead of kernel/emulator structure

- UNIX maturity

- Reduced possibilities for global optimization

BPOAD APPLICABILITY

Support turn-key operation
Need for trusted support tools
Reduce known vulnerabilities requiring a "GURU*
for repair
Eliminate "Super-User* by providing encapsulated
utilities

Reduce UNIX specific aspects of kernel
Flat file system
Rich inter-process communications
General process creation support

PROBLEMS ALONG THE WAY

I
Q-3

A4

MAINTAINING CONSISTENCY

Problem

* How to maintain consistancy between the multiple
independent representations of a system component

Solution

" Extensive use of on-line configuration management
tools

* Management discipline prudently applied

* Independent test team

* Formal testing

MULTIPLE LANGUAGE SUPPORT

Problem

* Seven different languages used for
various aspects of the project. All
required modification and support.

Solution

0 Hire multi-lingual staff

0 Encourge ADA

* Need more research in integrated
software development environments

MODULA

Problem

* Significant re-work of compiler was required.

Solution r

* ADA?

Q-4

MODULA (Continued)

Problem

* Strongly modular languages discourage
highly efficient structures, or incur
substantial overhead

Solution

* Additional research in compilers

* Better machine support

BENEFITS OF MODULA

* Strong typing

" Language-generic multi-programming

* Enforced modularity

FORMAL TOOLS

Problem

* Limitations of existing formal specification
languages

Solution

* More research, particularly In Integrated
environments

Q-5

MATHEMATICAL MODEL LIMITATIONS

Problem

* Beil-Lapadula model too restricted

Solution

* Research in models of security

INSIGHTS INTO
TRUSTED COMPUTING

HINDSIGHT -THINGS THAT WORKED

* Success of discipi ned methodology

*value of formal specifications for unexpected purposes

* Integrated development environment worked well

* Personnel accepted formal methods easily

*Although occasionally annoying, MIL-SPEC documentation

was useful

* Having a model to work against very helpful

06

HINDSIGHT - WHAT MIGHT HAVE BEEN DONE BETTER

* Better Integration of segment and file systems

* More Insight Into consistency between multiple representations

* Better Implementation language

* Simpler secure path mechanism

* Alternate Emulator structure

INSIGHTS INTO TCB DESIGN AND IMPLEMENTATION

" It can be donel

" Need for consistency between different languages, care
in their use

" Utilit and benefits of formal specifications

" Code proofs are not yet practical except for demonstrations.
However, being ready to do them is of great benefit.

* Need for additional tools and concepts

Q- 7

.k

ASSURANCE PRACTICES
IN KVMI370

MARVIN SCHAEFER
SYSTEM DEVELOPMENT CORPORATION

SANTA MONICA. CALIFORNIA

ASSURANCES FOR ACCREDITATION

SECURITY EVIDENCE

- HARDWARE ADEQUACY

- SECURITY ANALYSIS

- FORMAL SPECIFICATIONIVERIFICATION

- SOFTWARE ENGINEERING PRACTICES

- TESTING METHODOLOGY

- DOCUMENTATION

- PEER REVIEW

PREHISTORY OF THE CONCEPT

* REFERENCE MONITOR DEFINED

- ANDERSON, ET AL

* VIRTUAL MACHINE MONITOR STUDIES

- POPEK, WEISSMAN, BELADY

* VM/370 IMPLEMENTED

- REFERENCE MONITOR IS EMULATOR

- CP IS CPI67 ON SETTER HARDWARE

- 3 STATES FROM 2

- SEPARATE ADDRESS SPACES

- SMALL SIMPLE. CONSISTENT

- EVEN IMPLEMENTS S/370 SECURITY FLAWS

R-1

EARLY HISTORY

* PENETRATION STUDY - SDClIBM

* "HARDENING" EFFORTS

- YORKTOWN HEIGHTS

- APARS DEMANDED

- OTHER PROPOSALS

KVM SECURITY RETROFIT

* MINIMAL REWRITE OF CODE

* VERIFIABILITY ALL THE WAY TO THE CODE

"PARNAS'" SPECIFICATION

FORMAL VERIFIED SPECIFICATION

EXTENDED SECURITY ANALYSES

- EUCLID, VERIFIED IMPLEMENTATION

* CONTINUING PEER REVIEW

ARPA KVM REVIEW COMMITTEE

- ARPA SECURITY WORKING GROUP

IBM

* PERFORMANCE AND ME %SUREMENT GOALS

ARCHITECTURAL INFLUENCES

KERNELIZED DESIGN

UCLA SECURE UNIX'"

- MITRE 11145 KERNEL

AFDSC SECURE MULTICS

MIT PROJECT GUARDIAN

- SRI PSOS

HIERARCHICAL DATA TYPE MONITORS

HOARE. BRINCH HANSON

JANSON, REED

R-2

BASIC KVM ARCHITECTURE

F- TRiTDLROES

KERNEL
IVERIFIEDI N

TRUSTEDRO ESOR TA IE

CONTROVERSIES AND CONUNDRUMS

-TRUSTED PROCESS

- POLICY ENFORCEMENT IN KERNEL

- POLICY INTERPRETATION IN TRUSTED PROCESSES

*TRUSTED PROCESSOR AND PERIPHERALS

- CONTROL UNITS

- UNTRUSTED DEVICES

* CONFINEMENT AND SCHEDULERS

- WHAT COUNTS FOR CORRECTNESS?

- WHAT CAN BE VIRTUALIZED?

- SECURITYIPERFORMANCE TRADEOFFS

ABSTRACT SPECIFICATIONS

" IMPRECISE INFORMAL SPECS

- "PARNAS" FORMAT

- ENGLISH AND PSEUDO CODE STRUCTURE

" IMPRECISE FORMAL SPECIFICATIONS

- TIMELESSNESS

- NON-PROCEDURAL PROCEDURAL, iY

" TIMEOUTS

" CAPABILITY FAULTS

" CONTEXT RESTORATION

" ASEND

R-3

Al. -

SEARCH FOR SUITABLE. VERIFIABLE HOL

" EUCLID'S DEMISE

* PASCAL'S INEFFICIENCIES AND
DATA-STRUCTURE INADEQUACIES

" PUIS SUPPORT PACKAGE

* FREGE*S KARMA

" JOVIAL COMPROMISE

CODING FROM FORMAL SPECIFICATIONS

" INFINITE SETS BECOME FINITE TABLES

CONSIDERATIONS

- HOW FINITE?

- HOW SPARSE?

- HOW ACCESSED?

- HOW FREQUENTLY?

" FAITHFUL IMPLEMENTATION OF 3, V

CONSIDERATION

- IS IT A SPECIFICATION "FICTION'

" LEGALITY-CHECYING

REVISED SPECIFICAT:ONVERIFICATION
THRUST

" ORIGINAL SPECS

-- COMPLETED 1978

- NEVER VERIFIED

" REVISED. VERIFIED TOP LEVEL SPECS (19401

- DERIVED FROM CODE. IMPLEMENTORS

- ARCHITECTURAL MODIFICATIONISIMPLIFICATION

" SECOND-LEVEL SPECIFICATIONS (19601

- CORRELATION REVIEWFD WITH IMPLEMENTORS

- MAPPINGS COMPLETED BETWEEN LEVELS

R-4

AD-AIOI 996 DEPARTMENT OF DEFENSE WASHINGTON DCF/92
I PROCEEDINGS OF THE SEMINAR ON THE DOD COMPUTER SECURITY INITIAT--ETC(U)
I 1980

UNCLASSIFIED NI

CODINGh

TWO PARALLEL EFFORTS

- NKCP-KERNEL INTERFACE MACROS

- NKCP MODS PERF0OSMED VIA CMIS EXECS

- KERNEL IMPLEMENTED BOTTOM-UP

" SUB KERNEL

" TRUSTED PROCESSES STUBBED

TESTING

KSNM DEVELOPED A TESTED UNDER VMW=I

- HEAVY USE OF CMIS AND CF TEST ENVIRONMENTS
*ACETOP

*PER TRACE
*MACHINE CONFIGURATION

KERNEL *'UNIT" TESTING

-DRIVER IS PSEUDO E4ECP
*GROWN OVER TIME

*SELECTABLE KERNEL CALL TEST CASES
*LEGAL AS ILLEGAL PARAMETERS USED

KERNEL 'INTEGRATION'TESTING

DRIVER IS NECP OR NKCP.

-VM. USED TO DRIVE NECP.

TESTING SYNCHRONY AND ASYNCHRONY

- STRICT SYNCHRONY

- KERNEL. 1 KNCP. 1 VM

- A SYNCHRONOUS NKCP

-KERNEL I NKCP. 2 VMS

- ASYNCHRONOUS KERNEL

- KERNEL 2 NKCPS, 1 VM EACH

- TOTAL ASYNCHRONY

-KERNEL 2 NKCPS. 2 VMS PER NKCP

R-5

FIELD TEST

iNITIAL TESTS TO BEGIN JANUARY 1861

- SC IBM 4331

- ARMY ITEL ASS

- NAVY AMDAHL V17

- AIR FORCE IBM 3031/4341

i PERFORMANCE MEASUREMENT AND TUNING

" FUNCTIONALITY TESTING

" SECURITY INTERFACE EVALUATIONIFEEDBACK

" SECURITY TESTING

IN RETROSPECT

I INSUFFICIENT DETAILED DOCUMENTATION

" JOVIAL WAS NOT OPTIMAL CHOICE
- NOT MAINTAINED VMt370 COMPILER

- ORIGINAL KVM CONVENTIONS EXCEEDEO MANY
COMPILER CAPABILITIES

- LACK OF MODERN LANGUAGE FEATURES

" PEER REVIEW SHOULD BE FREQUENT

" WAS RETROFIT SUCH A GOOD IDEA?

" STAFF SIZE SHOULD HAVE BEEN INCREASED EARLIER

* STAFF SHOULD HAVE HAD ACCESS TO A LOCAL
COMPUTER

R-6

KERTJELIZED SECURE OPERATIN~G SYSTEM

(KSOS -6)

CHARLES 11. BONNJEAU

HONEYWELL

TOP I CS

o PROJECT OBJECTIVES

o HARDWARE DESIGN OVERVIEW

o SOFTWARE DESIGN OVERVIEW4

ASSURANCE TECHNIOUES

s-1

PROJECT OBJECTIVES

DEVELOP ADD-ONl HARDWARE TO C IlMERCIAL MIACHINE WHICH MAKES IT

EASIER TO BUILD SECURE SYSTEMS

* DEVELOP TCB SOFTWARE
- EJFORCE DoD SECURITY POLICY
- FORMALLY PROVABLE

- SUPPORT UNIX + OTHER APPLICATIONS

SPM + LEVEL 6 MINICOMPUTER = SCOMP

CENTRAL
PROCESSOR

UNIT

SVIRTUAL
MIEMORA SECURITY INPUT/INTERFACE PROTECTION OUTPUT MEMORY

UNIT MODULE CONTROLLER

CENTRAL
PROCESSOR
UNIT
BUS LOGIC

F BUS

S-2

S
4

!

SECURITY PROTECTIOII MODULE FEATURES

FAST PROCESS SWITCING
- PROCESS DESCRIPTOR TREE DEFIlITION VIA DESCRIPTOR BASE ROOT

- AUTO LOAD OF DESCRIPTORS

M 110 CPU TO fIEIlOPY MEDIATION OVERHEAD AFTER INlITIAL ACCESS

* 1-3 LEVEL flIORY DESCRIPTOR SYSTEM
q - R, W, E COITROL AT AlLY LEVEL

- SEGMENITS: 2K WORDS (512)

- PAGES: 128 WORDS

o I/0 MEDIATIONl
- CPU TO DEVICE

- DEVICE TO MEMORY

o IULTICS-LIKE RIIIG STRUCTURE
- 2 PRIVILEGED, 2 1101-PRIVILEGED RINGS

- READ, WRITE, EXECUTE, AUD CALL BRACKEIS

- RING CROSSIN G SUPPORT INSTRUCTIONS

o PAGE FAULT RECOVERY SUPPORT

KSOS-6 SOFTWARE

* SECURITY KERNEL

o TRUSTED SOFTWARE

o UNJIX EMULATOR

S-3

. , °

KERNEL DESIGN OVERVIEW

U JON-FILESYSTEM 10 OUTSIDE KERNEL

* FILES CONSTRUCTED EXTERNALLY USIIIG SEGMENTS

* DEMAND PAGING VIRTUAL MEMORY

* NON-DISCRETIONARY ACCESS CONTROL - BELL AND LAPADULA

- PRIVILEGE
- ACCESS ATTRIBUTES NOT FIXED

DISCRETIONARY ACCESS CONTROL
- UNIX R, w, E FOR OWNER, GROUP, OTHER

- RING BRACKETS FOR OWNER, GROUP, OTHER
- SUBTYPES

* KERNEL OBJECTS

- PROCESSES

- SEGMENTS

- DEVICES

KSOS-6 ARCHITECTURE

* ADDRESS SPACE PARTITIONING

MEIORY
* SEG 0-95: DISTRIBUTED KERNEL

9 SEG 96-127: LOCAL KERNEL

* SEG 128-511: USER

- DEVICE

o DEV 0-31: DISTRIBUTED KERIIEL

* DEV 32-511: USER

* RING STRUCTURE
- RING0: KERNEL

- RING 2 : UNIX EMULATOR

TRUSTED S/W

- RING 3 : USER APPLICATIONS

S-4

A.

VISIBLE FUNtCTJOIIS

PROCESSES SFGITS DEVICES

* CREATE-PROCESS 0 CREATE-SEGMENT 0 CREATE-DEVICE

0 INVOKE-PROCESS 0 DELETE SEGMENT S REMOVE-DEVICE

* RELEASE PROCESS 0 GET-SEGMENTACCESS S GET-DEVICE-ACCESS

* GET-PROCESSACCESS 6 SETSEGMENT-ACCESS 0 SET DEVICE -ACCESS

* SETPROCESSACCESS O GET SEGMENT STATUS S GEIDEVICE-STATUS

* GET-PROCESS-STATUS 4 SETSEGMENT.STATUS S SET DEVCE-STATUS

0 SET PROCESS STATUS 0 MAP SEGMENT 0 MAP DEVICE

a SETPROCESS_SUBTYPES 0 UNMAP.SEGMENT S UN*AP DEVICE

8 RECEIVE-J4ESSAGE I WIRE-SEGMENT S SECURE TEFRINAL-LOCK

* SEND-ESSAGE 6 UNWIRESEGMENT 0 SECURE TERMINAL UNLOCK

* INTERRUPTRETURN * SYNC-SEGMENT 0 MOUNT

* GET SYSTE#RARMETERS 0 UNM1OUt

* SHUTDOWN 0 READ SYSTEM CLOCK

S SET SYSTEM CLOCK

TRUSTED SOFTWARE

O OPERATIO:S SERVICES

- SECURE STARTUP

- OPERATOR INTERFACE

- SECURE LOADER(S)

- SIIUTDOWIN

* USER SERVICES

- SECURE INITIATOR

- SECURE SERVER

- LOGIN
- SET USER ACCESS LEVEL

- SET FILE ACCESS LEVEL

- tnrOUT

S-5

l I I

TRUSTED SOFTWARE (CONT)

* MAINTENANCE SERVICES

- MAKE FILE SYSTEM

- SEGMENT DUMP

- SAVE/RESTORE FILESYSTEM

- FILESYSTEM CONSISTENCY CHECK

ASSURANCE TECHNIQUES

HARDWARE

- DESIGN VERIFICATION

9 TESTING USED TO VERIFY DESIGN

o ANALYSIS USED TO VERIFY COMPLETENESS OF TESTINIG

- FAILURE INDUCED SECURITY COMPROMISE

* ESTABLISH PROBABILITIES THAT FAILURE WILL RESULT

III COMPROMISE

* IDENTIFY FUNCTIONS THAT REQUIRE RUNNING PERIODIC

"HEALTH CHECKS"
- HARDWARE "GATES" INCLUDED IN FORMAL TOP-LEVEL SPEC

S-6

ASSURANCE TECHNIUES

SOFTWARE

SPECIFICATIONS

* FORMAL TOP-LEVEL SPEC

* B5 DESIGN SPEC

* C5 DESIGN SPEC

- IMPLEMENTATION

s VERIFIABLE LANGUAGE - UCLA PASCAL

a 10K SOURCE LINES

- DESIGN REVIEWS

* INFORMAL VERIFICATION BY CORRESPONDENCE

THROUGH IMPLEMENTATION
- FORMAL VERIFICATION OF SYSTEM DESIGN

* SRI HIERARCHICAL DEVELOPMENT METHODOLOGY (HDM)

- ILLUSTRATIVE PROOF OF IMPLEMENTATION

- TEST --- TEST

KERNEL VERIFICATION STATUS/RESULTS

o PROOF OF DESIGN ALMOST COMPLETE

- 1 MODULE REMAINS
* FALSE THEOREMS EXIST

- RESOURCE EXHAUSTION

- TRANQUILITY PRINCIPLE VIOLATIONS

- EXCEPTION REPORTING ON WRITE-UPS

o DIFFERENCES FROM IMPLEMENTATION

- PRIVILEGE IS REMOVED

s TOOLS

- IMPROVED

- ISOLATING REASONS FOR FALSE THEOREMS IS TEDIOUS

S-7

SCOMP TLS

LEVEL MODULE 10, OF FUNLIIONS

1L PROCESS-VIRTUAL_PR LSStS 1]

12 PROCESS-VIRTUAL DEVICES

11 PROCESS-VIRTUAL SEGMENTS

10 INTERPROCESSCOMMUNICATION

9 PROCESS-OPERATORS 10

8 SEGMENTS I'

1 MOUNTABLE-FILESYSTEMS 11

0 DEVICES 2L

PROCESS-STATES 1

4 SUBTYPECONTROL)

$ OBJECT ACCESSCONTROL 10

2 PRIVILEGECONTROL

1 OBJECTNAMES

0 CLOCK

151

APPROX 400L, L[NES OF SPECIAL
SC 'VISIPLE FdNCTIONS - 12 HARDWARE (ATES

38 SOF.WARE GATES

h - A-

